Comparison of 3-carbethoxy-4-phenyl-but-3-en-2-one and methylene quinuclidinone as a ligand to reactivate mutant p53: molecular docking study in three types of crystal structure mutant p53: 2BIM, 2JIY, and 2J21

Author:

Julianus Jeffry1,Jumina Jumina2,Mustofa Mustofa3

Affiliation:

1. Doctoral Program in Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia

2. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta, Indonesia.

3. Department of Pharmacology and Therapy, Faculty of Medicine, `Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia.

Abstract

The existence of a large number of mutant p53 in cancer cell nuclei gives a poor prognosis. However, mutant p53 existence creates a challenge to design a new anticancer compound targeted to mutant p53. The 3-carbethoxy-4-phenyl-but-3-en-2-one is a novel compound that was designed as an anticancer agent targeted to mutant p53. Further evaluation of this compound was done by in silico examination employing Auto Dock Vina as molecular docking software. Molecular docking results denoted that 3-carbethoxy-4-phenyl-but-3-en-2-one had lower binding energy than methylene quinuclidinone (MQ). Visual inspection of the docking results denoted that 3-carbethoxy-4-phenyl-but-3-en-2-one docked in the binding pocket crystal structures of mutant p53 (2BIM, 2J1Y, and 2J21), forming a hydrogen bonding or hydrophobic interaction with Cys-124, and the distance between double bonds of α, β-unsaturated of 3-carbethoxy-4-phenyl-but-3-en-2-one with –SH group of Cys-124 were shorter than MQ. These results demonstrated that 3-carbethoxy-4-phenyl-but-3-en-2-one is a promising ligand to mutant p53 in many types of mutations and predicted to have better activity than MQ as a mutant p53 reactivator especially in cancers with mutation type Arg-273-His and Arg-245-Trp.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Reference44 articles.

1. Nandhini S, Radha R, Vadivu R. Docking of hematoporphyrin on various anticancer drugs targeting enzymes. Asian Journal of Pharmaceutical Research. 2016; 6(3): 123-130.

2. Murugan V, Revathi S, Sumathi K, Geetha KM, Divekar K. Synthesis of some 1-[bis-N, N-(2-chloroethyl)aminoacetyl]-3,5-disubstituted-1,2-pyrazolines as possible alkylating anticancer agents. Asian Journal of Research in Chemistry. 2010; 3(2): 496-499.

3. Patil SD, Vinayak K, Balsubraniyan, Anwar S. Docking studies and synthesis of novel flavones screened for biological activities like anticancer and antioxidant activity. Asian Journal of Research in Chemistry. 2015; 8(6): 399-406.

4. Bray F. Transitions in human development and the global cancer burden. In: Wild CP, Stewart B, eds. World Cancer Report 2014. Lyon: International Agency for Research on Cancer. 2014.

5. World Health Organization. Cancer. 2018. Available from: URL: https://www.who.int/mediacentre/factsheets/fs297/en/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3