Characteristics and Release Profile : Formula of Insulin Nanoparticles using Medium Molecular Weight Chitosan and Pectin Polymers

Author:

Mega Kusuma Tiara1,Saifullah Sulaiman Teuku Nanda2,Martien Ronny2

Affiliation:

1. Department of Pharmaceutics, Faculty of Health Science, Universitas Muhammadiyah Magelang, Indonesia.

2. Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract

Insulin is a macromolecular polypeptide hormone with low drug stability and permeability along the digestive tract. The nanoparticle delivery system has been proven to be able to increase the bioavailability of per-oral insulin. However, the formulation of insulin nanoparticles using chitosan and pectin polymers has not been widely studied. The purpose of this research is to figure out the physical characteristics and profile of insulin release from nanoparticle formulas made with ionic gelation techniques using chitosan and pectin polymers. The 0.1% insulin nanoparticle formula is made with variations of 2 levels of medium molecular chitosan and pectin concentrations to obtain 4 formulas, i.e. F1 (0.01%; 0.1%), F2 (0.03%; 0.1%), F3 (0.01%; 0.2%), and F4 (0.03%; 0.2%). The optimum formula is determined by the factorial design method contained in the Design Expert program using response characteristics in the form of percentage of the entrapment efficiency and zeta potential value. The selected formula is then tested for particle size and shape, and insulin release profile in vitro. The particle size and morphology are observed with TEM (Transmission Electron Microscope), while the insulin release profile is determined on HCl buffer media pH 1.2 and PBS pH 6.8. The optimization results of the formula show that F1 is the optimum formula with a desirability value of 0.786. The selected formula shows that the entrapment efficiency is 57.66%, the zeta potential is 12.0 mV, the shape of particles is spherical, and the size is <500 nm. In vitro studies show the profile of insulin release from the matrix following the Weibull kinetics model on HCl and Korsmeyer-Peppas media on PBS media, using the Fickian diffusion method. Overall, the insulin nanoparticles obtained have met the expected characteristic of the nanoparticles.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3