Application of Box–Behnken Design and Desirability function in the Optimization of Aceclofenac-Loaded Micropsonges for Topical Application

Author:

Sharma Anjali1,Kumar Guarve1,Singh Ranjit2

Affiliation:

1. Guru Gobind Singh College of Pharmacy, Yamunanagar-135001, Haryana.

2. Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Saharanpur-247001, Uttar Pradesh.

Abstract

Background: The aim of the present investigation was to develop optimized Aceclofenac-loaded microsponges using Box-Behnken design (BBD) and desirability function. Material and Method: Aceclofenac-loaded microsponges were developed using ethyl cellulose, ethanol and polyvinyl alcohol (PVA). Initially, a trial batch was developed using quasi-emulsion solvent diffusion method, and by optimizing the drug-polymer ratio. A 3-level, 3-factor BBD was used to investigate the effect of PVA, ethanol and stirring speed on particle size and entrapment efficiency (EE). The models used for the optimization were analyzed through ANOVA and diagnostic plots. Finally, the desirability function was used for the selection of optimized formulation composition. Results: A drug-polymer ratio of 1.5:1 was taken as optimized ratio for all the formulations. The developed microsponges were of the spherical shape having size and %EE in the range of 22.54±2.85 µm to 49.08±5.01 µm and 70.57±4.19% to 86.43±2.58 %, respectively. The amounts of PVA, ethanol and stirring speed were noted to have a significant impact on particle size and %EE. Finally, an optimized formulation (size-22.69 and %EE-86.42) was developed with a desirability value of 0.9967. Conclusion: The BBD is a valuable tool for the development of optimized microsponges with desired properties.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3