Lower Back Pain Classification using Parameter Tuning

Author:

Lenka Sushmita1,Victor Nancy2

Affiliation:

1. FICO - Solution Integration - Consultant, Bangalore, India.

2. Assistant Professor, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India.

Abstract

Back pain is one of the most popular diseases which cause extreme discomfort for patients. More than 80% of the people’s day to day activities are affected due to lower back pain. The symptom sometimes gets neglected and worsens the situation, which can cause lifelong damage to vital organs. Lower back pain can be classified as normal and abnormal LBP based on the boundary values of various parameters. Extensive research has been carried out in this field and most of the classification techniques serve the purpose by classifying the data with already provided accuracy values. However, this paper provides a novel technique by adding feature parameter tuning which acts as a catalyst in increasing the accuracy and thereby identifying the effective parameters that help in the optimization.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3