Potential of Anadara granosa Nanoparticles to improve the Expression of the Fibroblast Growth Factor-2 (FGF-2) in Chronic wound of Hyperglycemia conditions

Author:

Indah Budhy Theresia1,Pudji Rahayu Retno1,Ariestia Prathama Fata2

Affiliation:

1. Department of Oral and Maxillofacial Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

2. Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

Abstract

Background: Hyperglycemia can cause adverse effects in the oral cavity, one of which is inhibiting wound healing. Chronic hyperglycemia reduces the expression and distribution of growth factors, such as fibroblast growth factor-2 (FGF-2), a significant growth factor in angiogenesis. The disruption of wound healing may lead to chronic wounds to further infection. Routine oral wound treatment using topical steroid ointment is considered ineffective in hyperglycemic individuals due to its anti-angiogenic properties. Anadara granosa shell nanoparticles can induce the production of numerous growth factors such as FGF-2 and augment angiogenesis. Objective: To determine the potential of giving Anadara granosa shell nanoparticles to increase FGF-2 in chronic inflammatory wounds with hyperglycemia conditions. Discussion: Angiogenesis supports and intersects with other ongoing proliferative activities and with the remodeling phase. FGF-2 helps the proliferation of endothelial cells and the arrangement of endothelial cells to form a tube to help angiogenesis. Hyperglycemia is directly associated with a significant reduction in FGF-2-induced angiogenesis in vivo. Biogenic CaCO3 nanoparticles made from Anadara granosa have shown promising potential to increase FGF-2 by activating NF-κB signaling. Conclusion: Anadara granosa shell nanoparticles have the potential to increase the expression of fibroblast growth factor-2 (FGF-2) in chronic inflammatory wounds with hyperglycemia conditions.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3