In-silico Profiling of Deleterious Non Synonymous SNPs of Homogentisate 1, 2 Dioxygenase (HGD) Gene for Early Diagnosis of “Alkaptonuria”

Author:

V. Nagalakshmi1,J. Lavanya2,B. Bhavya3,V. Riya4,B. Venugopal5,A. Sai Ramesh6

Affiliation:

1. Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh.

2. Sri Padmavathi Mahila Viswavidyalayam University, Tirupati, Andhra Pradesh.

3. Jamia Hamdard University, Hamdard Nagar, Delhi.

4. Integral University, Kursi Road, Lucknow, Uttar Pradesh.

5. University College of Arts and Science, Telangana University, Nizamabad, Telangana.

6. Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi-Vel Tech Road, Chennai, Tamil Nadu, India.

Abstract

In-silico characterization and molecular modelling of a single amino acid substitution in HGD (Homogentisate 1,2dioxygenase) gene are mainly caused by the deficiency of enzyme Homogentisate 1,2dioxygenase (HGD). An enzyme HGD involved in the catabolism of amino acids such as tyrosine and phenylalanine. The objective of this study was to analyse non-synonymous SNPs from highly deleterious missense mutations which affect the protein function of HGD gene. Based on 3D structure different computational algorithms were performed to identify deleterious SNPs and assess the influence of mutation by using molecular dynamics simulations and molecular docking. Bioinformatics analysis like SIFT, PolyPhen 2.0, I mutant 3.0, PANTHER, SNPs and GO were performed to predict non deleterious ns-SNPs from missense mutations. Energy minimization was done by using GROMACS followed by RMSD calculations and free-energy values under SWISS-PDB viewer and PyMoL respectively. Later, Trajectory analysis was performed using computational tools like SRIDE, CONSURF, SPPIDER, PSIPRED, FLEXPRED for predicting the probably damaged ns-SNPs. Moreover, molecular docking was performed and identified highly deleterious probably damaging mutation. By operating 10 bioinformatics analysis, we obtained 5 mutations R53W, L61P, G121R, G361R and L430H which have an adverse effect on HGD gene. The results of the ConSurf analysis showed that all of these ns-SNPs are in the highly conserved positions and influence the structure of native proteins. L61P mutation had more effect on protein structure. Later, for future studies these mutations assists to develop an effective drug for the associated disease Alkaptonuria.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3