Multi Ejector and pivoting-supported R744 application with AC for supermarkets

Author:

Contiero Luca1,Pardiñas Ángel2,Hafner Armin1

Affiliation:

1. Norwegian University of Science and Technology

2. SINTEF Energi AS

Abstract

CO2 refrigeration units are gaining market shares thanks to the ability to provide an energy efficient performance for industrial and commercial refrigeration applications in any climate. As with all the applications, the investment and operation costs should be kept as low as possible, to reduce the payback time and promote the introduction of innovative system solutions. In this work the flexibility achieved by implementing the pivoting technology in a supermarket refrigeration application is investigated both at design- and partial load conditions. The air conditioning (AC) load is also considered within a wide range of ambient temperatures. The Multi Ejector block utilized will be analyzed in terms of performance and its effect on the compressor combinations at different operating conditions. The objective is to increase the flexibility of the centralized rack through a proper design and sizing of the compressor pack equipped with the pivoting technology, while maintaining the efficiency and reducing the investment costs. This work shows that a Multi Ejector pivoting-supported system will be beneficial from the flexibility and capital costs point of view, and the benefit will be more consistent if the AC load is part of the integrated system architecture. Furthermore, a thorough investigation has been conducted whenever the ejector capacity is too high compared to the load, proposing two alternative solutions.

Publisher

ECO-Vector LLC

Reference8 articles.

1. EPEE, Achieving the EU HFC Phase Down: The EPEE “Gapometer” Project. EPEE; 2015.

2. State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis

3. Hafner A, Fredslund K, Banasiak K. Next generation R744 refrigeration technology for supermarkets. In: Proceedings of the 24th IIR International Congress of Refrigeration, Yokohama, Japan. IIF/IIR, 2015.

4. Novel integrated CO2 vapour compression racks for supermarkets. Thermodynamic analysis of possible system configurations and influence of operational conditions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3