Experimental methods of pupillographic analysis based on high-speed video recording devices

Author:

Isaeva Oksana L.,Boronenko Marina P.

Abstract

The prospects for using artificial intelligence in video analytics are becoming more and more undeniable. Researchers are actively working on methods for making decisions based on the results of automated analysis of the sequence of images received from video cameras. The purpose of our study was to develop a method for decision-making based on modeling a person's pupillary response to an information stimulus. A ZWO ASI120MC digital video camera was used for research. The studies carried out made it possible to reliably establish that the state of the optical system of the eye when viewing the calibration slide comes to a physical state common to all people. This made it possible to systematize the pupillograms, referring them to one of two categories (stress state is / is not). Having determined an individual threshold value during calibration, it becomes possible to quickly classify a person's emotional response to the received information impulse. Based on the developed methodology for systematizing the pupillary reaction to an information stimulus by categories, a decision tree for intelligent video surveillance systems was built. In addition to the size of the pupils, the algorithm takes into account the parameters of gaze fixation on stimulus images, the stability of the illumination of the surface of the pupils.

Publisher

Yugra State University

Reference14 articles.

1. Кольцов, А. С. Использование алгоритмов видеоаналитики в задачах выделения и распознавания человеческого лица в цифровом видеосигнале / А. С. Кольцов, Т. Е. Урусова, П. Ю. Гусев. – Текст : непосредственный // Техника и безопасность объектов уголовно-исполнительной системы. – Воронеж, 2018. – С. 33–35.

2. Бороненко, М. П. Телевизионная измерительная система наносекундного разрешения / М. П. Бороненко, П. Ю. Гуляев. – Текст: непосредственный // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2014. – № 1 (31). – С. 60–64.

3. Каменева, М. Е. Психологические профили потенциально опасных лиц / М. Е. Каменева. – Текст : непосредственный // Вестник Московского университета МВД России. – 2010. – № 11. – С. 12–18.

4. Elevated response of human amygdala to neutral stimuli in mild post traumatic stress disorder: neural correlates of generalized emotional response / M. Brunetti [et al.] // Neuroscience. – 2010. – Т. 168, №. 3. – P. 670–679.

5. Machine learning to differentiate between positive and negative emotions using pupil diameter / A. Babiker [et al.] // Frontiers in psychology. – 2015. – № 6. – P. 19–21.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3