Abstract
This study examines the etiological structure and antibiotic resistance features of pathogens causing infectious complications in wounded patients receiving specialized medical care are considered. A total of 3845 clinical isolates were analyzed from wounded individuals admitted t o a multidisciplinary hospital for treatment. The analysis revealed that polyresistant pathogens, namely, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii were predominant among the isolated microorganisms. The prevalence of Acinetobacter baumannii varied based on the type of clinical material, with higher rates observed in wounds and respiratory, and urinary tract discharges. The polyresistant clinical isolates of Acinetobacter baumannii were sensitive to tigecycline and polymyxin, while Klebsiella pneumoniae and Pseudomonas aeruginosa were sensitive to polymyxin only. A comparison of the 2022 data with a previous study conducted in 2020 on wound discharges revealed a significant shift in the spectrum of pathogens causing wound infections. This shift involved an increase in the proportion of Acinetobacter spp., Bacillus spp., Enterococcus spp., Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as a decrease in the proportion of certain gram-negative bacteria, including Proteus spp. and Escherichia coli. Additionally, a notable five-fold reduction in the proportion of Streptococcus spp. and Staphylococcus aureus was observed. It is likely that early empirical therapy for combat wounds effectively prevents the development of wound infections associated with these pathogens. Bloodstream infections were primarily caused by coagulase-negative staphylococci (34.5%) and Klebsiella pneumoniae (27.8%). Notably, 80% of Staphylococcus spp. isolates were methicillin-resistant. The prolonged course of infectious complications associated with polyresistant strains and the challenges in selecting appropriate antibacterial therapy may contribute to the circulation of antibiotic-resistant nosocomial strains within the hospital environment. Therefore, it is crucial to increase the vigilance of the epidemiological service in addressing the high frequency of polyresistant pathogens to implement timely antiepidemic measures. Overall, these findings indicate the involvement of polyresistant gram-negative bacteria in the development of infectious complications during the inpatient treatment of wounded individuals.