Artificial intelligence in ultrasound of thyroid nodules, prognosis of I-131 uptake

Author:

Manaev Almaz V.12ORCID,Trukhin Alexey A.12ORCID,Zakharova Svetlana M.12ORCID,Sheremeta Marina S.1ORCID,Troshina Ekaterina A.12ORCID

Affiliation:

1. Endocrinology Research Centre

2. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Abstract

BACKGROUND: Thyroid nodules are a prevalent issue, with an estimated incidence of 19% to 35% based on ultrasound examination and 8% to 65% based on autopsy findings [1]. In some cases, Plummer’s disease is observed, and nodular masses may be observed in 10% to 35% of Graves’ disease cases, with iodine accumulation of a different nature [2, 3]. One of the principal treatments for Graves’ and Plummer’s diseases is radioiodine therapy, which serves to exclude the possibility of malignancy in nodules. Furthermore, the pharmacokinetics of iodine is investigated, which represents the most time-consuming and labor-intensive stage of preparation for radioiodine therapy. In clinical practice, ultrasound is performed in accordance with the TI-RADS system, followed (if necessary) by fine-needle aspiration puncture biopsy, stratified according to the Bethesda system. However, the interpretation of ultrasound examinations is inherently subjective, whereas the use of decision support systems can reduce the number of fine-needle aspiration puncture biopsies by 27% and the number of missed malignant neoplasms by 1.9%. Furthermore, the quantitative characterization of nodal ultrasound may enhance the investigation of the pharmacokinetics of I-131 [4, 5]. AIM: The study aimed to develop a method for quantitatively characterizing ultrasound images of thyroid nodular masses for predicting malignancy and I-131 accumulation by nodular masses. MATERIALS AND METHODS: The study included 125 nodules with pathomorphologic findings (65 benign, 60 malignant) and 25 benign nodules (established by cytologic examination) of patients who underwent radioiodotherapy as part of the Russian Science Foundation grant project No. 22-15-00135. Longitudinal and transverse projections of thyroid nodules were obtained using GE Voluson E8 (36% of all benign nodules and 27% of malignant nodules) and GE Logiq E (64% of benign and 73% of malignant nodules). A pharmacokinetics study was conducted on 25 nodes obtained on a GE Logiq V2 device. The accumulation index of I-131 was determined after 24 hours. A spatial adjacency matrix, gray level line length matrix, gray level zone size matrix, and histogram were employed to investigate features based on ultrasound images. RESULTS: The malignancy prediction model, developed on the basis of the most significant features and after KNN correlation analysis, exhibited a diagnostic accuracy value of 72±3%, a sensitivity of 73±5%, and a specificity of 73±5%. An investigation of I-131 pharmacokinetics revealed that the maximum histogram intensity gradient (r=–0.48, p=0.08) and intensity entropy (r=–0.51, p=0.06) exhibited the highest Spearman correlation coefficient modulus with I-131 accumulation after 24 hours. CONCLUSIONS: The present study demonstrates the feasibility of using quantitative characterization of ultrasound images of nodal masses as a tool to monitor nodules before radioiodotherapy. This is with a view to subsequent adjunctive fine-needle aspiration puncture biopsy and prediction of I-131 accumulation after 24 hours.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3