Neurophysiology of creativity and machine learning applications for creative process’ stages differentiation through assessment of EEG/VP signals

Author:

Shemyakina N. V.1,Nagornova Zh. V.1

Affiliation:

1. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Abstract

Of particular interest for researching the cognitive specializations of neurons is their correlation with environmental variables and animal behavior. Mutual information (MI) is a preferable method for measuring such correlations, as it allows for the assessment of non-linear relationships between variables, detects synchronization, and provides both significance and strength quantification. However, calculating MI for real data is significantly challenging. In this study, we used updated MI calculation techniques to analyze the connection between calcium fluorescence signaling and behavioral variables. Our approach encompasses novel strategies which we compiled into a software program known as INTENS (Information-Theoretic Evaluation of Neuronal Specializations), and it enabled to identify specialized neurons in mice hippocampal calcium activity data while they explored the arena with varying levels of novelty. Numerous methods exist for analyzing the relationship between neuron spikes and behavioral variables, including information-theoretical approaches [1]. Extracting information about the relationship between calcium fluorescent signals and behavior is of particular interest due to the signal’s ability to provide crucial information about subthreshold activations of the neuron. In this study, we use the GCMI Gaussian copula entropy method to calculate mutual information [2]. This method relies on the fact that mutual information between two random variables is independent of their marginal distributions and only depends on the type of copula used (a multidimensional distribution where each marginal distribution is uniform). The actual MI was compared to its corresponding values computed on the time-shifted signals for assessing the statistical significance of the computed information association between the calcium signal and the behavioral variable. Additionally, we devised a technique for gauging the strength of the coupling effect. This involved normalizing the mutual information between the fluorescence signal and the behavior with the entropy value of both variables, previously calculated as random variables. Importantly, the approach outlined earlier is effective for analyzing continuous variables such as calcium signal and animal speed, as well as pairs of continuous and discrete variables such as calcium signal and the presence or absence of grooming. The analysis of calcium signals recorded from the CA1 region of the hippocampus revealed neuronal specializations related to the animal’s external environment, such as place cells, and specializations related to its behavioral activities, including neurons activated during running, rearing, and freezing. Some neurons selectively activated in response to discrete parameters included the animal’s location within the arena (center, walls, and corners) and its speed (rest, slow, and fast). A total of 781 specializations were detected across 472 neurons throughout all four sessions of the experiment. Notably, a single neuron could have several specializations. However, more than half (55%) of the neurons were found to have only one specialization.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3