Variability in size and shape of wings in longevity-selected strains of house fly (Musca Domestica L.): geometric morphometrics

Author:

Akhmetkireeva Tansulpan T.,Ben'kovskaya Galina V.,Vasil'ev Aleksei G.

Abstract

Background. The aim of the study is evaluate the long-term morphogenetic consequences of the housefly mass selection by the lifespan of two formed strains with different longevity. Materials and methods. Two control groups were detached from the strains Sh gen (short-living adults) after 65th and L gen (long-living) after 45th generations of selection for early or late reproduction. Geometric morphometrics of the fly’s wing shape are made from the configurations of 17 homologous Landmarks positioned on the wings images. The direction and magnitude of the interstrain differences were estimated using the canonical analysis of Procrustes coordinates, which characterized the variability of the wing shape. The degree of intra-group morphological disparity from the values of the first two canonical variables was analyzed by the nearest neighbour point pattern analysis. Results. Significant interstrain and sex differences in the shape and size of the wing were revealed. The size of the wing plate of males and females of the Sh gen strain and the level of intragroup disparity are significantly larger than in the L gen strain. The pattern of intragroup disparity of the wing shape of the Sh gen adults is characterized by a significant effect of ordinates overdispersion. Conclusion. A hypothesis has been put forward that the revealed morphogenetic rearrangements in individuals of both strain formed on the base of historically existing potent ontogenetic trajectories of species. It is assumed that the basis for morphogenesis rearrangements are the primary epigenetic changes due to the transposition of the mobile elements of the genome.

Publisher

ECO-Vector LLC

Subject

Genetics (clinical),Genetics,Ecology,Biochemistry,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3