The synthesis of Broccoli RNA fluorescent aptamer in <i>Saccharomyces cerevisiae</i> yeast cells

Author:

Shanaa Ousama AlORCID,Rumyantsev Andrei M.ORCID,Sambuk Elena V.ORCID,Padkina Marina V.ORCID

Abstract

BACKGROUND: RNA aptamers are short, single-stranded oligonucleotides, with remarkable binding ability to target molecules characterized by high specificity and affinity. Such targets are vastly diverse and range from specific ions to entire cells. RNA aptamers are widely used in biology and medicine for basic research, as well as for practical purposes as in therapy and diagnostics. At present, chemical or in vitro methods of synthesis are mainly used to obtain RNA aptamers. However, such methods are expensive and time-consuming with low productivity. Therefore, in vivo methods are becoming more attractive to researchers working on optimizing high-scale production of RNA aptamers. AIM: The aim of this work is to develop a reporter system for optimizing the synthesis of small RNA molecules in Saccharomyces cerevisiae yeast cells. MATERIALS AND METHODS: We used the Broccoli fluorescent RNA aptamer to develop a reporter system allowing us to optimize the conditions for in vivo short RNA synthesis in yeast cells. This aptamer is about 112 bp in size and binds to the fluorogenic dye DFHBI-1T. Only upon binding, the aptamer-dye complex exhibits fluorescence properties. After excitation using light with a wavelength of 482 nm, the aptamer-dye complex emission is observed with a peak at 505 nm. RESULTS: We have designed a reporter system providing the synthesis of the fluorescent Broccoli RNA aptamer in S. cerevisiae yeast cells. Transcription of RNA molecules containing the aptamer is carried out by the regulated promoter of the GAL1 gene. The synthesized transcripts contain the HH and HDV ribozymes to ensure precise cleavage of the RNA aptamer sequences. CONCLUSIONS: This reporter system is based on the Broccoli RNA aptamer, and it can be used to optimize the in vivo synthesis of RNA aptamers in S. cerevisiae yeast cells. This work serves an urgent task in connection with the active use of such aptamers in scientific research, biotechnology and medicine.

Publisher

ECO-Vector LLC

Subject

Genetics (clinical),Genetics,Ecology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Agricultural and Biological Sciences (miscellaneous),Biotechnology,Health, Toxicology and Mutagenesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3