DNA methylation in early mice embryogenesis under the influence of bisphenol A

Author:

Noniashvili Ekaterina M.,Grudinina Natalia A.,Kustova Marija E.,Tran Van Truong,Suchkova Irina O.,Pavlinova Larisa I.,Sasina Ludmila K.,Dergacheva Natalia I.,Sofronov Henrikh A.,Patkin Eugene L.

Abstract

Background. Nonsteroid estrogen – bisphenol A (BPA) can have a detrimental effect on human health, and therefore poses a potential threat to humans. The critical window for the effect of BPA is the time of early development of the embryo, especially during the activation of the embryonic genome during development to the stage of blastocyst. Therefore, it is especially important to understand how DNA methylation is modified in embryos of the earliest developmental period under the influence of BPA. Materials and methods. Mice hybrids F1 (CBAXC57BL) were once administered 0, 8 mg of BPA per mouse and the level of DNA methylation was estimated by detection the fluorescence of antibodies against 5-MeC in nuclei of GD3 and GD9 embryos. In other series, the level of DNA methylation and the rate of blastocyst development were estimated following cultivation of one- and two cells embryos in the presence of BPA (50 or 100 µM) during 72-96 hours in vitro. Results. BPA exposure induced the decrease of the level of DNA methylation in GD3embryos received toxicant in utero, the amount of blastomeres in these embryos was decreased too. The level of DNA methylation in GD9 embryos was slightly higher than in control group. Upon cultivation of one-two cells embryos, BPA decreased the level of DNA methylation and the rate of embryos development to blastocyst stage. Conclusion. We have determined that early embryogenesis is highly sensitive period to the BPA effects. Such effect is most likely due to active reprogramming processes in this period, primarily related to DNA demethylation/methylation de novo of both the whole genome and individual genes.

Publisher

ECO-Vector LLC

Subject

Genetics (clinical),Genetics,Ecology,Biochemistry,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Environmental Epigenetics and Genome Flexibility: Focus on 5-Hydroxymethylcytosine;International Journal of Molecular Sciences;2020-05-02

2. EPEGENTIC TOXICOLOGY: PERSPECTIVES OF THE DEVELOPMENT;Toxicological Review;2018-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3