Abstract
BACKGROUND: The ability of plants to adapt to oxygen deficiency is associated with the presence of various adaptations, many of which are mediated by significant changes of metabolism. These changes allow resistant wetland plants to grow even in oxygen-deficient environment.
AIM: The aim of the study was to carry out metabolic profiling of the leaves of the wetland species Epilobium palustre and Epilobium hirsutum, and the mesophyte species Epilobium angustifolium in order to identify the most characteristic metabolome traits of hypoxia-resistant plants.
MATERIALS AND METHODS: Metabolite profiling was performed by GC-MS. Statistical analysis of metabolomics data was processed using R 4.2.1 Funny-Looking Kid.
RESULTS: The resulting profile included about 360 compounds. 70 of these were identified and 50 compounds were determined to a class. Sugars (64) were the most widely represented in the obtained profiles. 16 amino and 20 carboxylic acids, lipids and secondary compounds have been identified. Significant differences were revealed between the profiles of leaf metabolomes of mesophyte E. angustifolium and hydrophytes E. hirsutum and E. palustre. The mesophyte was characterized by high levels of sugars. The metabolomes of wetland Epilobium species practically did not differ from each other and were characterized by the accumulation of amino acids, including GABA shunt intermediates, dicarboxylic acids of the Krebs cycle, and metabolites of glycolysis and lactic acid fermentation, which reflects the stimulation of anaerobic respiration, nitrogen metabolism, and alternative pathways of NAD(P)H reoxidation in wetland plants.
CONCLUSIONS: Traits of metabolic profiles detected in hydrophyte Epilobium species can be used to assess the degree of plant resistance to oxygen deficiency.
Subject
Genetics (clinical),Genetics,Ecology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Agricultural and Biological Sciences (miscellaneous),Biotechnology,Health, Toxicology and Mutagenesis
Reference56 articles.
1. Molecular strategies for improving waterlogging tolerance in plants
2. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects
3. How plants cope with complete submergence
4. Flooding Stress: Acclimations and Genetic Diversity
5. Crawford RMM. Studies in plant survival. Anderson DJ, Greic-Smith P, Pitelka FA, editors. Ecological case histories of plant adaptation to adversity. Studies in ecology. Vol. 11. Oxford; London; Edinburgh; Boston; Palo Alto; Melbourne: Blackwell Scientific Publications, 1989. 296 p.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献