Artificial intelligence systems in surgery: A review of opportunities, limitations, and prospects

Author:

Kobrinskii Boris A.ORCID

Abstract

Artificial intelligence technologies are increasingly being applied in a variety of medical disciplines. After reviewing 278 publications from 1985 to 2023, 99 articles were selected from the databases elibrary, PubMed, Medline, WoS, Nature, Springer, and Wiley J Database to present the main approaches and a modern picture of the application of artificial intelligence methods and technologies in pediatric surgery and intensive care. The article examines many facets of artificial intelligence systems for medical uses, namely, computer decision support systems or supporting the surgeon throughout the surgical intervention procedure. Computer analysis of 3D visualization and 3D anatomical modeling of images obtained from computed tomography and magnetic resonance imaging investigations can be used to plan operations. Because of the possibilities of sufficiently accurate 3D models and methods for organs and pathological processes, various methodologies and software tools for preoperative planning and intraoperative support of surgical intervention have been developed. Computer (technical) vision analyzes high-quality medical images and interprets them in multimodal three-dimensional images for computer diagnoses and operations under visual control, including augmented reality methods. Robotic surgery involves manipulators, including remotely controlled ones, and intellectualized complexes that independently perform specific actions of the second assistant surgeon. In intensive care, artificial intelligence technologies are being investigated to merge data from bedside monitors and other information about patients conditions to identify critical situations and control mechanical ventilation. Simultaneously, several obstacles impede the adoption of artificial intelligence in surgery. The nature and standardization of the initial data required for their integration, taking into consideration atypical cases, the possibility of bias in the sample used, and the transparency of the decision-making process in machine learning models are examples. The explanation of solutions presented in machine learning models and the transition to full-fledged validation of the systems being built define the prospects for developing and using artificial intelligence systems.

Publisher

ECO-Vector LLC

Subject

General Medicine

Reference99 articles.

1. Gasparyan SA, Pashkina ES. Stranitsy istorii informatizatsii zdravookhraneniya Rossii. Moscow, 2002. 304 p. (In Russ.)

2. Nazarenko GI, Osipov GS. Meditsinskie informatsionnye sistemy i iskusstvennyi intellekt. Moscow: Meditsina XXI, 2003. 234 p. (In Russ.)

3. Developing and evaluating a machine learning based algorithm to predict the need of pediatric intensive care unit transfer for newly hospitalized children

4. Prediction of imminent, severe deterioration of children with parallel circulations using real-time processing of physiologic data

5. Deep Learning Algorithm to Predict Need for Critical Care in Pediatric Emergency Departments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3