Modern technologies of early diagnosis of wound infection

Author:

Svistunov Sergey A.1ORCID,Kuzin Alexander A.1ORCID,Zharkov Denis A.1ORCID,Lantsov Evgeny V.1ORCID,Morozov Sergey A.1ORCID,Svistunova Irina A.2ORCID,Shkarupa Vitaly V.3ORCID

Affiliation:

1. Military Medical Academy

2. Saint Petersburg State Agrarian University

3. Military Medical Academ

Abstract

The article presents an analysis of the data of modern literature devoted to the study of early diagnosis of wound infection. It is well known that wound healing is a very complex and dynamic mechanism of wound re-epithelialization. At the same time, the normal microflora of the skin plays an important function for maintaining homeostasis and the formation of the skin. There are about 1000 species of microorganisms belonging to the normal flora of human skin and do not cause any harm to healthy people. At the same time, there are microorganisms that, when they enter the wound, lead to the development of infectious complications of wounds as a result of a violation of the integrity of the skin. They include both gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative bacteria (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Enterobacter spp., Morganella spp., etc.). Early detection of these microorganisms will contribute to timely and high-quality treatment of wound infection. Currently, there are certain conditions that limit the use of microbiological research methods used to establish a clinical diagnosis of wound infection (long duration, labor intensity, required level of qualification of specialists, etc.). This dictates the need to develop new, fast and easy-to-use methods for diagnosing wound infection. To this end, a group of researchers from Russia (Skolkovo Institute of Science and Technology) and the USA (University of Texas at Austin) have recently developed wearable sensors for the diagnosis of wound infection. These sensors can be embedded in wound dressings and are able to detect certain biomarkers indicating the presence of wound infection. Among these biomarkers, pH and uric acid are the most commonly used, but there are many others (lactic acid, oxygenation, inflammatory mediators, bacterial metabolites or the bacteria themselves). Currently, the development of microelectronics, the emergence of biochemical sensors, active microfluidics and painless microneedles have led to the creation of new generations of wearable biosensors that provide completely new opportunities in the fight against wound infection.

Publisher

ECO-Vector LLC

Reference34 articles.

1. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

2. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges

3. Svistunov SA, Kuzin AA, Suborova TN, et al. Features and directions for the prevention of health care-associated infections at the stage of specialized medical care. Bulletin of the Russian Military Medical Academy. 2019;21(3):174–177. (In Russ.)

4. Potaturkina-Nesterova NI, ed. Skin microbiota in normal and pathological conditions. Ul’yanovsk: UlGTU Publishing Hоuse; 2014. 113 p. (In Russ.)

5. Синтез и применение магнитных молекулярно импринтированных тетрациклином полимерных наночастиц в пьезоэлектрическом сенсоре

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3