A new concept of superelevation in magnetic levitation – prodynamic

Author:

Jacob Angelo,Monteiro Nuno

Abstract

Background: The topic of Magnetic Levitation systems, in terms of land mass transport, have created high expectations compared to aviation and also to the high speed railway industry. This new concept comes to revolutionize the terrestrial mass transport, in both the speeds and the subject of friction. Magnetic levitation solves the issue of attrition between material contact and as such may also be an opportunity to solve the question of constant physical superelevation. Aim: Precisely that point of superelevation coupled with magnetic levitation, eliminating the rigid physical structures to laterally lift the vehicle in a curve. Current magnetic levitation systems do not address this issue of dynamic superelevation. It’s exposed an improvement technology which is a theoretical possibility of a track through a new magnetic line can apply necessary rotation to the vehicle in curve and adjust its rotation according to the speed that vehicle moves. Methods: In order to make this system to work it is suggested the introduction of a magnetic field in the new line, which will allow the vehicle to rotate in curves and will negate the need of the conventional static superelevation. This study appeared as a result of an investigation of a master's thesis in civil engineering at ISEP, where the participants created the concept of dynamic superelevation in the context of magnetic levitation. The project was applied to the reformulation of an existing railway network. The study base of this model resulted from a broad survey of current magnetic levitation systems. Then came the idea of creating a third dynamic magnetic field to operate the curved superelevation. Results: The result of the study was the creation of a new "monorail" system of simple and geometrically constant structure. The new line has the advantage of providing a simple and constant geometry, facilitating the manufacture, assembly and thus making it much more economical compared to the current systems. The cross-section allows the vehicle to fit perfectly and with the creation of rotating magnetic fields, the vehicle can be turned to both sides, at the required inclination, according the speed. With this new concept called ProDynamic, the geometry design in plan is totally independent of the speed practiced by the vehicle, where it can travel in curve at different speeds, but with the same lateral no-compensated acceleration, without detriment of passenger comfort. Conclusion: Combining existing systems with this new concept, it is possible to create a total freedom in curves and superelevation, which will provide a maximum comfort and significant construction savings. There is therefore no longer a problem of deficiency or excess cant, as currently exists on railways. The advantage in the ProDynamic system is that it is possible to greatly reduce or even eliminate the lateral no-compensated acceleration.

Publisher

ECO-Vector LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3