Characterization of levitation force for a superconducting magnetic levitation vehicle

Author:

Costa FelipeORCID,De Andrade RubensORCID,Stephan RichardORCID

Abstract

Background: In Superconducting Magnetic Levitation (SML) transportation systems, such as the MagLev-Cobra prototype, the levitation force plays an important role, both for efficiency and safety reasons. Aim: Determination of the maximum load on the magnetic suspension. Methods: To determine how much load the magnetic suspension system supports, numerical simulations, based on computational models, and laboratory experimental tests are normally used. The most commonly way for characterization of a SML bearing is the measurement of the levitation force as a function of distance between a Superconductor (YBCO) [1, 2] and a Permanent Magnet Guideway (PMG). The measurement of levitation as a function of distance, the banana curve, has a hysteretic behavior with the results depending of the history of measurement: whether the distance between the superconductor and the PMG is decreasing the force is higher than when the distance is increasing, the force is higher with faster movements and so on. A different approach of levitation force test will be proposed as an alternative to the hysteresis curve. This method, applied to characterize the levitation dynamics of the Maglev-Cobra vehicle, provided more reliable and consistent data with the levitation dynamics observed during the operation of the real scale prototype in the transportation of passengers. The bench-top levitation test emulates the behavior of the vehicle along its operation, regardless of the position history between the magnets and the superconductor materials. The test consists in placing the superconductor, refrigerated inside cryostats, in a predetermined Field Cooling (FC) position, and slowly move the cryostat above the PMG to a lower high, for example 15 mm, and wait 10 minutes. After that, the high is decreased 1 mm and again hold there for 10 minutes. The procedure is repeated until a high of 10 mm is reached. The hole process is repeated at least 5 times. This routine replicates the load condition during the vehicle operation when passengers board the train and the load stay constant until the end of the journey. After that, another group of passengers takes place inside the vehicle and is carried to the next station. This kind of test shows the creep of the levitation force over time with slow dynamics and gives the average load over height of levitation along the given time of operation, helping engineers to predict the load capacity of the vehicle and design a more reliable layout. Results: Three FC positions were investigated. The position currently used by the MagLev-Cobra (35 mm) and other 2 positions (45 mm and 55 mm) of initial height between the superconductor and the permanent magnet guideway. Conclusion: All these results contribute to an improvement in the criticality index and a safe application of this system on transportation of persons.

Publisher

ECO-Vector LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calculation and evaluation of load performance of magnetic levitation system in medium-low speed maglev train;International Journal of Applied Electromagnetics and Mechanics;2019-12-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3