Maglev freight - one possible path forward in the U.S.A.

Author:

Wolek Arthur LesterORCID

Abstract

Background: As high-speed rail and other transportation technologies are moving forward and gaining funding in the United States, the push for MagLev is not receiving the necessary support that would make it a viable alternative in the near future. Major changes in the approach to implementing MagLev could make a better case for it, specifically for carrying freight. One alternative that has been considered in the past is the modification of existing freight railways to support MagLev. For this to be economically feasible and practical, such a solution has to be able to support both conventional freight trains and MagLev freight.    Aim: The successful application of Partially Magnetically-Levitated Freight (PMLF) technology achieved by integrating superconducting MagLev technology with current railroad design and operations. Methods: A MagLev freight system that is envisioned to use existing rail routes must be designed to be compatible with the existing railway infrastructure. To accomplish this, every component utilized by the railroads must be examined in detail to determine if and how it could be affected by the proposed PMLF. In addition, components that will need to be modified for PMLF operation must undergo a retrofit design and testing process. The design scope must also include an examination of all existing tasks and activities that are being performed by the railroads such as track maintenance and repair. Any procedures that affect or are affected by the addition of PMLF will need to be modified. Finally, superconducting MagLev technology must be optimized and advanced for application to PMLF.    Opinions and Discussions: The dual use of railway lines has substantial cost advantages when compared to building new dedicated MagLev freight corridors. In fact it could make the entire proposition very appealing if proven to be technically feasible. However, there are certain limitations and concerns that would cause policy makers to reject such a proposal unless such obstacles can be shown to be temporary and non-critical. Essential rail installations such as switches are presently difficult to modify in a way that would ensure reliable functionality for both MagLev and conventional freight trains, and grade crossings pose safety risks. It is difficult to envision the tremendous leap forward of merging MagLev with existing freight rail lines when much more basic technologies such as positive train control are not even fully implemented. Consequently, it is a challenge to advance MagLev in the United States where new dedicated freight corridors are considered to be cost-prohibitive and dual use railway lines pose uncertainties that railroad companies simply do not want to solve. However, there is one more solution has not been considered that would allow a MagLev freight train to navigate on existing railway infrastructure without disrupting traditional rail utilization. This solution is a partially magnetically-levitated freight train. Results: After reviewing the fundamental components, systems and operations of the railways in the United States, it will be feasible and practical to introduce magnetic levitation technology to assist in moving freight on existing rail routes. PMLF trains will be able to take advantage of magnetic levitation on sections where the track has been upgraded to allow its use and much higher speed while still being able to travel on unmodified sections with the same speed as traditional trains. Conclusion: Modifying existing freight rail with magnetic “quasi-lift” technology is a much lower cost alternative to building an entirely new MagLev infrastructure. This alternative will provide very important benefits including enhancing safety in the rail industry. In its first phase of implementation, the proposed PMLF system will levitate a significant portion of the weight of the train but still utilize the existing steel rails for traction and guidance. The most evident advantages of this approach include reduced wear on rail and other supporting elements, and a significant reduction in friction and energy use. Locomotives, freight cars and all other components could be made lighter and travel speeds will increase dramatically due to less impact and other effects. Later phases of implementation will focus on magnetic traction and guidance. The acceptance and success of this partially levitated system will eventually lead to fully levitated freight transport technology. Sometimes it is necessary to take smaller steps to achieve the desired future.

Publisher

ECO-Vector LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3