Peculiarities of simulation of magnetic field in electromechanical nodes of magnetic-levitation transport system by the method of secondary sources

Author:

Filippov Dmitry Maksimovic

Abstract

In recent years increasingly discusses the prospects of application of high-temperature superconductors (HTS) as the winding current-carrying elements of magnetic systems for various purposes. It seems particularly attractive possibility of such systems at liquid nitrogen temperature. The article describes the prototype of module of the magnetic system which is made on the basis of high-temperature superconducting tapes, designed for the installation and testing on a working model of a static levitation. In the working model levitation of the platform carried by the interaction of the magnetic field of the assembly of permanent magnets mounted on the platform with a field similar to assemblies located in the track structure. Compact HTS module replaces the two assemblies of permanent magnets mounted on the platform. Each block of the module represents HTS racetrack coil with current inputs, power structure, positioning system and bracing which is placed in a cryostat, providing at minimum wall thickness of the required mechanical strength and thermal insulation at liquid nitrogen temperature. The prototype of unified superconducting module successfully passed preliminary tests.

Publisher

ECO-Vector LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traction linear induction motor of urban MAGLEV transport;Transportation Systems and Technology;2020-03-30

2. Linear Induction Motors without Longitudinal Edge Effect;Transportation Systems and Technology;2019-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3