Repair of Bone Defect of the Talus with Calcaneus Autograft and Autologous Matrix-Induced Chondrogenesis: A Case Report

Author:

Korobushkin Gleb V.ORCID,Akhmedov Bagavdin G.ORCID,Chebotarev Vitaly V.ORCID,Gaidarov Arip R.ORCID

Abstract

Background. The question of choosing a treatment strategy for full-thickness osteochondral defects of the tarsal bone remains relevant. When choosing a treatment strategy, two key points should be considered: restoring the architecture of the tarsal bone and achieving long-term restoration of cartilage-like coverage in the area of the osteochondral defect. Case report. A 34-year-old physically active patient sustained an ankle injury in 2011 and was treated conservatively. In 2020, he complained of pain and reduced activity. Initial assessment scores were: VAS (Visual Analog Scale) — 6 points, AOFAS-AHS (American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Score) — 49 points, FAAM (Foot and Ankle Ability Measure) — 55 points. An MRI revealed an osteochondral defect in the medial part of the tarsal bone dome, measuring 16.4×9.4 mm and with a depth of 20.8 mm. The patient underwent the replacement of the bone defect with an autograft taken from the heel bone, using autologus matrix induced chondrogenesis (AMIC) procedure. After 6 months, a follow-up examination was performed, including ankle arthroscopy and removal of metal fixators. Arthroscopic findings showed that the chondroplasty area was almost identical to intact joint cartilage. One year after chondroplasty, the patient returned to his previous level of physical activity. Assessment scores were: VAS — 1 point, AOFAS-AHS — 94 points, FAAM — 83 points. Conclusion. The proposed method allows for the restoration of the architecture of the tarsal bone along with the cartilage surface. The use of a bone autograft helps to fill the tarsal bone defect, and covering the autograft with a collagen membrane contributes to the formation of hyaline-like cartilage tissue in the defect area.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3