Comparative Biomechanical Analysis of Ankle Arthrodesis Techniques: Experimental Study

Author:

Khominets Vladimir V.ORCID,Mikhailov Sergey V.ORCID,Zhumagaziev Sayan E.ORCID,Shchukin Alexey V.ORCID,Ivanov Dmitry V.ORCID

Abstract

Background. Despite the existing significant number of various techniques for ankle arthrodesis, a number of authors point to certain technical difficulties of these operations, the loss of the talus and tibia position during ankylosing, nonunion. The problem of the ankle arthrodesis technique improving requires new solutions. The aim of the study was to compare the stability of various fixation systems in ankle arthrodesis by the finite element method. Methods. The finite element method was used to evaluate the biomechanical characteristics of three variants of ankle arthrodesis systems: three cancellous screws, the originally designed plate combined with two cancellous screws, when the screw in the proximal plates hole is cortical, and the same plate combined with two cancellous screws, when the screw in the proximal plates hole with angular stability. The stresses and strains under the application of various types of loads are studied. Results. In the anterior plate ankle fixation model combined with two cancellous screws and a proximal cortical screw, the implants and the talus experienced the least stresses compared to the other two models. Thus, the maximum equivalent stress in implants in the second variant was 68-124 MPa, in the first variant 92-147 MPa, in the third variant 130-331 MPa. The equivalent stress in the talus in the second version of fixation ranged from 20 to 46 MPa, in the first and third versions 28-58 MPa and 47-65 MPa, respectively. The indicators of maximum contact pressure at the border of the tibia and talus turned out to be the highest in the first variant compared to the other two models (34 MPa, 31 MPa and 31 MPa, respectively). Conclusions. Among the studied ankle fixation systems for arthrodesis, an anterior plate combined with two cancellous screws and a proximal cortical screw is the most preferable in terms of biomechanics.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3