Different Models of Dual-Energy Bone DXA Scanners: A Comparative Study

Author:

Petraikin Alexey V.ORCID,Akhmad Ekaterina S.ORCID,Semenov Dmitry S.ORCID,Artyukova Zlata R.ORCID,Kudryavtsev Nikita D.ORCID,Petriaikin Fedor A.ORCID,Nizovtsova Ludmila A.ORCID

Abstract

Background. Dual-energy X-ray absorptiometry (DXA) is an effective method for bone mineral density (BMD) and subcutaneous fat percentage estimation. The constant development of new densitometry techniques, the demographic change and the higher potential of artificial intelligence in healthcare enhance requirements for the high-quality measurements in DXA. This study aimed to develop a quality control method for DXA scanners and compare four DXA systems with different X-ray geometries and manufacturers when simulating fat-water environments. Methods. We evaluated the accuracy (relative error (%) and precision (CV%)) of the bone mineral density (BMD) measurements, performed by the four DXA scanners: 2 with narrow-angle fan beam (64- and 16-channel detectors (DXA-1, DXA-2)); 1 with wide-angle fan beam (DXA-3); 1 with pencil beam (DXA-4). We used a PHK (PHantom Kalium) designed to imitate spine. The PHK contained four vertebras filled with a K2HPO4 solution in various concentrations (50-200 mg/ml). The PHK also included paraffin patches (thickness 40 mm) to simulate the fat layer. Results. DXA-1 and DXA-2 demonstrated the best CV% ranged from 0.56% to 1.05%. The least % was observed when scanning PHK with fat layer on DXA-1 and DXA-2 (1.74% and 0.85%) and DXA-4 (1.47%). DXA-3 produced significantly lower BMD ( = -14.56%, p = 0.000). After removing the fat layer, we observed reduction (p = 0.000) of BMD for DXA- 1 and DXA-2 ( = -5.11% and -6.12% respectively) and weak deviation (p = 0.80) for DXA-4 (0.87%). For DXA-3, removal of the fat layer also resulted in a significant reduction in BMD ( = -16.44%, p = 0.000). The subcutaneous fat modeling showed that all these DXA systems automatically determine the percentage of fat in the scanned area with weak underestimation: for DXA-1, DXA-2 and DXA-4 the % were -5,9%, -6,3% and -2,3% respectively. CV% were 0.15%; 0.39%; 1.6%, respectively. Conclusions. We proved a significant underestimation of the BMD measurements across the entire range of simulated parameters for the DXA scanners when the model did not include the subcutaneous fat layer. All models demonstrated high accuracy in measuring the fat layer, with the exception of the DXA-3 model, which was not assessed in these studies.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3