Slc6a4, Tph2, Htr1b, Htr2a genes expression in the mouse spinal cord after microgravity exposure simulation on earth

Author:

Kuznetsov M S,Lisyukov A N,Davleeva M A,Izmailov A A

Abstract

Aim. To determine the level of gene expression of the serotonergic neurotransmission system (Slc6a4, Tph2, Htr1b, Htr2a) in the cervical and lumbar enlargement of the spinal cord for mice after 30-day microgravity exposure simulation by using the antiorthostatic unloading model by Morey-Holton et al. and a subsequent 7-dayrecovery period. Methods. The experimental animals were divided into three groups: Unloading group with mice undergoes hindlimb-unloading procedure for 30 days (n=5); Recovery group with mice undergoes hindlimb-unloading procedure for 30 days, followed by readaptation within 7 days (n=5); Control group with mice kept at standard vivarium conditions (n=5). The expression level of genes encoding synaptic proteins in the central nervous system was estimated by a real-time polymerase chain reaction. Results. There were no statistically significant differences between the studied groups regarding the Tph2, Htr1b, and Htr2a expressions in the cervical and lumbar enlargement of the spinal cord. Compared to the Control group, a statistically significant increase (6.3 times) in the level of Slc6a4 expression in the lumbar spinal cord was revealed after microgravity exposure simulation (Unloading group), followed by a 3-fold decrease during the readaptation period (Recovery group ). Conclusion. The expression level of the Slc6a4 gene, which encodes carrier protein involved in the function of serotonergic synapses, may indicate the potential involvement of this neurotransmitter system in the pathogenesis of movement disorders after microgravity exposure simulation on earth.

Publisher

ECO-Vector LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3