Assessment of ovarian follicular reserve according to ultrasound data based on machine learning methods

Author:

Laputin Fedor A.1ORCID,Sidorov Ivan V.1ORCID,Moshkin Andrey S.2ORCID

Affiliation:

1. Higher School of Economics

2. Orel State University

Abstract

BACKGROUND: Ovarian reserve reflects a woman's ability to successfully realize reproductive function. The assessment of ovarian reserve is an urgent task for clinical practice [1] and is important in scientific research. The use of computerized diagnostic image processing methods can accelerate and facilitate the performance of routine tasks in clinical practice. Their use in retrospective data analysis for scientific purposes allows to increase the objectivity of the study and supplement it with auxiliary information [2]. The issue of ovarian localization and follicle segmentation on ultrasound images has been previously investigated in other works. For instance, Z. Chen et al. [3] employed the U-net model to identify follicles on ultrasound images. Similarly, V.K. Singh et al. [4] addressed a related problem using a variant of U-net, namely UNet++ [5], which has gained considerable traction in the field of medical image analysis [6]. AIM: The study aimed to develop machine learning models for analyzing ovarian images obtained from an ultrasound machine. MATERIALS AND METHODS: An open dataset with a labeled ovary region was used for pre-training ovarian segmentation and follicle detection models. Subsequently, the dataset, which contains marked-up ovarian and follicle regions, was employed for training and testing. It encompasses a total of approximately 800 examples from 50 unique patients. The localization of follicles in an ultrasound image is a challenging task. To address this, the designed detector system was divided into two parts: ovary segmentation and follicle detection within the selected region. This approach allows the model to focus on a region where there are no other organs and various ultrasound artifacts that can be falsely perceived as the object under investigation. For the purpose of ovarian segmentation, the UNet++ architecture [5] was employed in conjunction with the ResNeSt encoder [8], which incorporates the SE-Net [9] and SK-Net [10] attention mechanisms. The object detection model is employed to identify the location of follicles within the ovary, as it enables precise enumeration of the number of follicles, even in the presence of overlapping structures, a capability that the segmentation model lacks. In our study, we used the YOLOv8 model [11]. Furthermore, data preprocessing has been employed to enhance the quality of model predictions. This has involved the identification and removal of regions with auxiliary information, the reduction of noise, and the augmentation of data. RESULTS: Two ovarian localization models are presented based on the results of this study. The first model is a segmentation model with an IoU quality of at least 50%. The second model is a detection model with a mAP quality of at least 65%. A third model is a model for follicle detection with subsequent follicle counting. This model has an MAPE error not exceeding 35%. CONCLUSIONS: The study resulted in the proposal of a method for applying machine learning techniques to the task of analyzing ultrasound images. The developed segmentation and detection models reduce the time and errors in analyzing ovaries and follicles in the images. The use of an attention mechanism and data preprocessing improves the quality of the models. The neural network for follicle detection provides follicle counting, even when follicles overlap.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3