Chemogenetic emulation of intraneuronal oxidative stress affects synaptic plasticity

Author:

Maltsev D. I.12,Kalinichenko А. L.13,Jappy D.24,Solotenkov M. A.3,Solius G. M.1,Mukhametshina L. F.13,Elesina E. A.3,Sokolov R. A.56,Tsopina A. S.3,Fedotov I. V.37,Moshchenko A. A.2,Fedotov A. B.37,Shaydurov V. A.28,Rozov A. V.2,Podgorny O. V.125,Belousov V. V.125

Affiliation:

1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

2. Institute of Fundamental Neurology, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency

3. Lomonosov Moscow State University

4. Kazan Federal University

5. Pirogov Russian National Research Medical University

6. Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod

7. Russian Quantum Center “Skolkovo”

8. Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Abstract

Overproduction of reactive oxygen species (ROS) and oxidative cell damage are commonly associated with most brain pathologies [1, 2]. Dysregulation of redox homeostasis in the aging brain is thought to be responsible for impaired synaptic transmission and plasticity, leading to reduced neuronal computational capacity and learning and memory deficits. Studying the contribution of oxidative stress to the development of diseases, such as age-related dementia and Alzheimer’s disease, is complex due to the lack of methods for modeling isolated oxidative damage in individual cell types [3]. We introduce a chemogenetic approach utilizing D-amino acid oxidase (DAAO) from yeast to produce hydrogen peroxide intraneuronally, which is one of the most stable ROS [4]. H2O2 generation was evaluated in primary cultured neurons and acute mouse brain slices through the utilization of a genetically encoded fluorescent biosensor, HyPer7, to validate the methodology [5]. The changes in the fluorescence signal of HyPer7 after treating neurons that expressed DAAO with D-Norvaline (D-Nva), a substrate for DAAO, confirmed the targeted production of H2O2 through chemogenetics. Using electrophysiological recordings in acute brain slices, we demonstrated that intraneuronal oxidative stress induced by chemogenetics did not affect basal synaptic transmission and the probability of neurotransmitter release from presynaptic terminals. However, it diminished long-term potentiation (LTP) at the single-cell level. Astrocytes have the ability to metabolize d-amino acids, rendering the proposed approach ineffective in vivo experiments. Consequently, in vivo testing of the tool was necessary for validation. To achieve this, an optical setup for exciting and detecting the HyPer7 signal was developed and implanted into the mouse brain via optical fibers. By using this approach, we were able to demonstrate the generation of H2O2 in DAAO-expressing neurons in vivo, upon intraperitoneal administration of D-amino acids. The results demonstrate that using a DAAO-based chemogenetic tool, along with electrophysiological recordings, clarifies numerous unanswered queries regarding the part of ROS-dependent signaling in typical brain activities and the impact of oxidative stress on the development of cognitive aging and preliminary neurodegenerative stages. The suggested method is valuable for detecting initial indicators of neuronal oxidative stress. Additionally, it can be used for evaluating probable antioxidants that can effectively combat neuronal oxidative harm.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3