Abstract
BACKGROUND: Reverse transcription polymerase chain reaction (PCR) is the main method for detecting the viral agent of coronavirus disease-2019 (COVID-19). This analysis is performed in a non-automated mode in many medical laboratories, which implies a significant labor intensity of a test. However, its magnitude, as well as the workload on staff in the context of variability in testing volumes, has not yet been quantified due to the lack of systematic approaches to studying the labor costs of laboratory staff.
AIM: This study aimed to investigate the structure and magnitude of the labor cost components of laboratory staff when performing manual PCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA) and obtain stratified data that characterize the labor intensity of the testing, which are suitable for workload modeling.
MATERIALS AND METHODS: The study of the labor costs (as labor time) of the PCR laboratory staff was conducted based on the Clinical Diagnostic Laboratory of the Multidisciplinary Medical Center of the Bank of Russia using a time-and-motion study methodology. Hence, the authors method for researching the labor costs of medical laboratory staff was applied.
RESULTS: The lists of standard manipulations of the time-studied labor process were formed workplaces, the manipulations were classified according to the labor cost components, and the duration of each component was statistically determined. The labor intensity per test under current working conditions was 110.2 s for the reception and registration, 144.6 s for RNA extraction, and 79.4 s for reaction mixture preparation/amplification workplaces. The workload magnitude for the personnel of these workplaces corresponded to 47%, 62%, and 34% of a lab specialists annual working rate budget. The stratification of labor costs into fixed and variable allowed us to model the workload depending on the change in the testing volume and the number of analytical runs, as well as develop nomograms for the annual total labor time calculation.
CONCLUSION: The proposed approach to labor cost accounting and analysis makes it possible to obtain suitable stratified data for modeling the workload of personnel during manual PCR-testing for SARS-CoV-2 RNA. The developed nomograms based on them can serve the purposes of planning the laboratory work and increasing its efficiency by choosing the optimal schemes for organizing the labor process. The obtained data can be used in other laboratories that perform real-time PCR tests for molecular genetic markers.