Sample size calculation for cross-sectional studies

Author:

Mitkin Nikita A.ORCID,Drachev Sergei N.ORCID,Krieger Ekaterina A.ORCID,Postoev Vitaly A.ORCID,Grjibovski Andrej M.ORCID

Abstract

The cross-sectional study design is widely prevalent in Russian medical literature. However, a significant number of these studies neglect to calculate the sample size during the planning phase, and the analysis often relies solely on basic bivariate statistics. This compromises the validity of the findings and increases the risk of drawing inaccurate conclusions. The scientific rigor of a study depends on a quality of planning, a clear problem statement, and precise formulation of statistical hypotheses, which are then tested using the most appropriate analytical methods. At the core of this process lies the determination of the appropriate sample size. The primary objective of this article is to provide a comprehensive, step-by-step guide for the sample size calculation process. By adhering to our guidelines, researchers can ensure that their cross-sectional studies possess sufficient statistical power to generate meaningful results. We acknowledge the significance of tailoring sample size calculations to the specific objectives and data characteristics of each study. Therefore, our approach is designed to be flexible and adaptable, accommodating the unique requirements of diverse research endeavors. There are several software options available for sample size calculation; however, we use the G*Power software for all the examples presented in this paper. Our guide is designed to provide practical understanding of the topic, with each step being accompanied by illustrative examples and detailed screenshots. This approach ensures that the material is not only understandable but also applicable in real-world scenarios. Furthermore, we take the extra step of interpreting every dialog box and screenshot, aiming to create a comfortable user experience with the software. We hope that this paper will serve as a valuable guide in the planning stage of a study, helping researchers to address a wider range of issues and reliably estimate the associations between selected exposures and the outcomes of interest with sufficient statistical power.

Publisher

ECO-Vector LLC

Subject

General Medicine,Public Health, Environmental and Occupational Health,Ecology,Health (social science)

Reference21 articles.

1. CROSS­SECTIONAL STUDIES: PLANNING, SAMPLE SIZE, DATA ANALYSIS

2. Chan YH. Biostatistics 102: quantitative data — parametric & non-parametric tests. Singapore Med J. 2003;44(8):391–396.

3. Analysis of variance (ANOVA) comparing means of more than two groups

4. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Lippincott Williams & Wilkins; 2008. 758 p.

5. Selection of confounding variables should not be based on observed associations with exposure

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3