Trajectory simulations by the numerical solution of the point-mass equations of motion for 7.62 mm/.308” rifle bullets

Author:

Gangopadhyay Soham,Rohatgi RichaORCID

Abstract

BACKGROUND: The understanding of the dynamics of the trajectory is important in ballistics to estimate the values of various flight variables accurately. The paper deals with the study of the fundamental principles of external ballistics, which allows to delve into the trajectory characteristics of the free flight trajectory of seven. 308 caliber bullets by numerically solving the point-mass equations of motion. Numerical solutions were performed by writing scripts in the Python programming language and using the Matplotlib library to plot simulated trajectories. AIM: the three aims of the study were to observe the variation of CD with Mach number (Ma) of flight and calculate an average CD for each bullet under consideration. Further, solving the 3-DoF (Degrees-of-Freedom) Point-Mass trajectory equations of motion for the given bullets (along side observing the effects of range winds on the trajectory behaviour as a variable). And finally, solving the flat-fire approximation with analysis of the effects of a crosswind. MATERIALS AND METHODS: Simulations of free-flight trajectories of seven different 7.62 mm/.308 rifle bullets (designated B0B6) have been carried out by the numerical solution of the equations of motion. The average drag force coefficients (CD) for B0B6 have been calculated by scaling the variation of CD with the Mach number of flight with reference to the G7 standard projectile. The Point-Mass trajectory model and its Flat-Fire approximation have been studied with and without the effect of range winds. The solutions of the systems of equations have been carried out by writing scripts in the Python programming language. RESULTS: It is observed that an increase in the bullet weight and consequently the sectional density lowers the CD. As expected, it is seen that the bullet with the highest drag (B0) has the shortest range and lowest apogee, while lower drag bullets fly further and higher. The crossover of trajectories is observed at ~30 angle of gun elevation, which implies that the maximum range is not achieved when fired at 45, as is the case with vacuum trajectories. Flat-fire approximation of the point-mass model was also solved to observe trajectories and crosswind deflections of the bullets when fired at 5 angles of elevation. CONCLUSION: This project presents the numerical solution of equations of motion of the Point-Mass model for a bullet fired from a gun to computationally simulate its trajectory. A group of seven 7.62 mm/.308 rifle bullets were chosen as samples to simulate free-flight trajectories. The programming language Python is well-equipped to carry out numerical solutions of systems of differential equations owing to its library of in-built functions which assists in writing an efficient script and reduces computational load. This method of solution can be applied with suitable modifications in the field of forensic ballistics for the reconstruction of bullet trajectories and to form a conclusion based on the available evidence from a crime scene.

Publisher

ECO-Vector LLC

Subject

Law,Pathology and Forensic Medicine,Anatomy

Reference18 articles.

1. Warlow T.A. Firearms, the law, and forensic ballistics. 2nd ed. Boca Raton, Fla: CRC Press; 2005. 456 p.

2. McCoy R.L. Modern exterior ballistics: the launch and flight dynamics of symmetric projectiles. Rev. 2nd ed. Atglen, PA: Schiffer Pub; 2012.

3. 62X51 mm 147 Grain FMJ Lead Core M80 ball range grade ammunition. Available from: https://fedarm.com/product/7-62x51-308-win-147-grain-fmj-lead-core-m80-ball-range-grade-ammunition/. Accessed: Apr. 15, 2022.

4. CALIBER/7.62MM 150 GR. FMJBT. Sierra Bullets. Available from: https://www.sierrabullets.com/product/30-caliber-7-62mm-150-gr-fmjbt/. Accessed: Apr. 15, 2022.

5. CALIBER/7.62MM 150 GR. HPBT MATCHKING. Sierra Bullets. Available from: https://www.sierrabullets.com/product/30-caliber-7-62mm-150-gr-hpbt-matchking/. Accessed: Apr. 15, 2022.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Morphological study of fly-ash block under angular impact of 9 mm projectile;Russian Journal of Forensic Medicine;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3