High maize barrier prevents maize pollen transfer in mixed crops

Author:

Chumakov Mikhail I.ORCID,Gutorova Olga V.,Gusev Yury S.ORCID

Abstract

BACKGROUND: There is no scientifically-based assessment for the safety during co-cultivation of genetically modified and ordinary maize plants in Russia. The influence of the barrier from high maize plants for pollen-mediated gene flow in the 2020 field experiment (South-East of the European part of Russia, Saratov region) was evaluated. MATERIALS AND METHODS: We used the high (2,152,90 m) maize hybrids (Kaz LK 178 and ES Regain) as a barrier for pollen-madiated gene flow from pollen donor (Purple Saratovskaya) with purple grain to recipient (Bursting Corn) maize line with yellow grain. RESULTS: The analysis of the ears of the recipient maize line showed that not a single purple grain was found on them. It was found that in the presence of a barrier zone with a width of 315 m (depending on the direction), crossing in recipient maize line in all directions from the donor is completely excluded. CONCLUSIONS: It was established, for the first time, that the barrier from high maize hybrid plants completely excludes over-pollination between donor and Bursting Corn, recipient maize plants with different flowering time. In the study of barrier plants as pollen recipients, it was found that the percentage of crosses on the cob of barrier plants ranged from 0.1 to 7.1%. The number of crosses exceeding 0.9% is observed mainly in the ES Regain variety at close (15 m) distances from the donor, regardless of the prevailing wind direction. Based on the results of model experiments, it can be recommended to use a barrier for corn pollen from tall maize plants and maize varieties with different flowering periods to exclude uncontrolled over-pollination of maize varieties in the South-East of the European part of Russia conditions.

Publisher

ECO-Vector LLC

Subject

Genetics (clinical),Genetics,Ecology,Biochemistry,Ecology, Evolution, Behavior and Systematics

Reference22 articles.

1. United States Department of Agriculture. World Agricultural Production. Current Report, Circular Series. 2019. WAP 7–19.

2. ISAAA. Global Status of Commercialized Biotech / GM Crops: 2016. ISAAA Brief No. 52. New York: ISAAA, Ithaca. 2016.

3. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data

4. Chesnokov YuV. Genetically modified organisms and genetic pools of plants: environmental and agricultural safet. Vavilov Journal of Genetics and Breeding. 2011;15(4):818–827. (In Russ.)

5. RISKS OF POLLEN-MEDIATED GENE FLOW FROM GENETICALLY MODIFIED MAIZE DURING CO-CULTIVATION WITH USUAL MAIZE VARIETIES

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3