A mixture of carbon dioxide and dimethyl ether as a refrigerant for ground air conditioning system

Author:

Zharov Anton A.ORCID,Garanov Sergey A.,Talyzin Maksim S.ORCID,Kovalchuk Nikita A.ORCID

Abstract

BACKGROUND: The selection of refrigerants for modern air conditioning systems (ACS) in ground facilities is a multidisciplinary task. Particularly, meeting the required energy efficiency of the refrigeration cycle as well as ensuring ecological safety of production, operation, and utilization of the refrigeration system. Herein, the working pressure levels of the refrigeration cycle considerably affect the availability, cost, and safety of the refrigeration equipment. The fire safety of the working substance is also important. AIM: To investigate the feasibility of a mixture of dimethyl ether and carbon dioxide as refrigerant for energy efficient and safe application of ACS in ground facilities. METHODS: Comparative analysis of a simple one-stage vapor–compression cycle using traditional working substances (R22 and R410A) and the proposed working substance, which is in the form of a mixture of dimethyl ether and carbon dioxide, using packages, such as Mathcad, HYSYS, CoolPack, and REFPROP, was performed. Results: An ecofriendly mixture of dimethyl ether and carbon dioxide with low global warming potential and zero ozone depletion potential was proposed as refrigerant. Increasing the percentage of dimethyl ether in the blend reduces the temperature glide in the gas cooler, a property of CO2, and pressures at which the blend operates. The mixture has limited operational properties due to the flammability of dimethyl ether, but its environmental performance makes the material of some practical interest. CONCLUSION: Fire safety of the proposed working substance was calculated. The concentration of dimethyl ether in the mixture at which it becomes flammable and unsafe for ACS was determined to be 8.3%. With an increase in the dimethyl ether content in the mixture with CO2 from 4% to 8%, the refrigeration coefficient of the cycle increases from 2.53 to 2.88, but it is 1.57 times less than that of R410A. The difference in operating pressures between the used non-ecological refrigerants and proposed mixture was determined. Results indicate that the mixture of dimethyl ether and carbon dioxide is currently inapplicable to mass production compressors, which use R410A as refrigerant. The condensation pressure of the most effective and nonflammable mixture of dimethyl ether and CO2 (with dimethyl ether concentration of 8%) is 101 bar against 30 bar for R410A. Therefore, we intend to evaluate test mixtures of dimethyl ether with other substances in the future.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3