Modeling of the operation of a disc pump with the wall roughness consideration

Author:

Cheremushkin Viacheslav A.ORCID,Lomakin Vladimir O.ORCID

Abstract

Background: at present, a small number of studies of disk pumps operating on a low-viscosity liquid have been conducted. In addition, among the existing works, numerical calculations are presented, which have a serious discrepancy with the experiments carried out. This article is devoted to numerical simulation of the operation of a disk pump on water, comparison of the calculation results with experimental data. Aims: to determine the factors affecting the convergence of the main characteristics with experimental data when performing CFD calculations on a low-viscosity liquid. Methods: in this paper, a numerical modeling method based on the solution of discrete analogs of the basic equations of hydrodynamics is used. To compare CFD calculations with the experiment, a test bench was created on which two configurations of the impeller were studied. Results: it is shown that for this type of dynamic machines, it is important to take into account the influence of the roughness of solid walls when modeling their operation on a low-viscosity liquid, since it has a significant effect on the characteristics of the disk pump. The obtained characteristics are compared with experimental data, as well as flow patterns in the flow part. Conclusions: based on the results of the article, it can be argued that taking into account roughness in numerical calculations of a dynamic pump has a positive effect on convergence with experimental data.

Publisher

ECO-Vector LLC

Subject

General Medicine

Reference10 articles.

1. Misyura VI, Ovsyannikov BV, Prisnyakov VF. Disc pumps. Moscow: Mashinostroenie; 1986. (In Russ.).

2. Benderovich VA, Lunatsi ED. Dynamic laminar (disc) friction pumps. Areas of application of ONL pumps. Hydraulics of Bauman Moscow State Technical University. 20214:10-33. (In Russ.).

3. On the possibility of using disk impellers in low-flow oil pumps

4. THE EXPERIMENTAL MODEL OF DISC-PUMP FOR MECHANICAL CIRCULATORY SUPPORT

5. Regularized equations for disk pump simulation problems in OpenFOAM implementation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3