Evaluation potential hazard of molybdenum (VI) oxide nanoparticles for human health

Author:

Zemlyanova Marina A.ORCID,Zaitseva Nina V.ORCID,Stepankov Mark S.ORCID,Ignatova Anna M.ORCID

Abstract

BACKGROUND: The expanding scope of molybdenum (VI) oxide (MoO3 NPs) nanoparticle application has increased the risk of developing pathological disorders in the exposed population due to the negative effects of this nanomaterial. As such, there is a need to assess the potential hazard of MoO3 NPs to human health. AIM: To determine the degree of potential danger of MoO3 nanoparticles for human health. MATERIAL AND METHODS: The potential hazard of MoO3 NPs was assessed in accordance with MR 1.2.2522-09. A comparative assessment of the physical parameters of nano- and micropowder MoO3 particles (Sigma-Aldrich, USA) in terms of size, specific surface area, total pore volume, and shape was conducted based on the results of our own experimental studies. Generalization of information on physicochemical, molecular biological, cytological, physiological and ecological properties was performed according to the data presented in the scientific literature. Based on the predictive-analytical modeling of the properties of MoO3 NPs, the potential hazard coefficient (D) and the coefficient of incompleteness of data assessment (U) was calculated. RESULTS: Our findings showed that 84.17% of the nanopowders consists of spherical particles 100 nm in size with an average diameter of 58.80 nm, a specific surface area of 3.66 m2/g, and a total pore volume of 0.0133 cm3/g. Micropowders consist of prismatic particles that are 57.99 times larger in size and but 1.17 and 1.18 times smaller in specific surface area and total pore volume compared to the MoO3 NPs, respectively. MoO3 NPs enhance the generation of intracellular free radicals, accumulate in cells, damage organelle membranes, cause DNA strand breaks, affect gene expression and proteomic profile, which leads to cell death. The toxic effects of MoO3 NPs in vivo are showed in pathomorphological changes in the tissues of the liver, organs of the reproductive system, changes in blood parameters, death of exposed animals, and long-term effects. It has been established that MoO3 NPs have an average degree of potential hazard to human health (D=1.750), the assessment is statistically significant (U=0.147). CONCLUSION: The obtained results should be taken into account to improve the methodology for the sanitary regulation of nanomaterials in environmental objects and develop preventive measures for workers and populations exposed to MoO3 NPs.

Publisher

ECO-Vector LLC

Subject

General Medicine,Public Health, Environmental and Occupational Health,Ecology,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3