Abstract
BACKGROUND: At present, modern dentists used dental intraoral three-dimensional (3D) scanners routinely in their daily work. Obtaining an optical 3D image of the teeth and dentition helps avoid errors at the stage of obtaining traditional silicone impressions and significantly reduces the level of discomfort during dental procedures. Intraoral scanner systems are commercially available today. Despite their advantages over traditional silicone impressions, the accuracy of the optical impressions obtained during total and subtotal prosthetics on the upper and lower jaw are still questionable.
AIM: This study aimed to evaluate the accuracy of scanning models of the patients dentition obtained using intraoral scanners and to determine the currently available models of digital devices that are optimal in terms of price and quality.
MATERIAL AND METHODS: The reference scan (master model) was an optical image of the reference model of the upper jaw of a patient with a full dentition made by additive 3D-printing technology obtained using a laboratory scanner. To level out the shrinkage errors of photopolymerization materials, the resulting model was scanned on the same day using intraoral scanners selected for the study. The obtained scan results were compared with the reference scan of the control group. Based on the measurements made at reference points, the average error value relative to the master model and its precision were calculated for each scanner. In addition to the average values, the error parameters of the scanners in the frontal and chewing sections were calculated, as well as the arc error, which was equal to the difference in the values of the discrepancy at the reference points at which the maximum and minimum values were obtained. The cost and availability of scanners on the domestic market, under the sanctions policy of foreign countries, were also considered.
RESULTS: The CEREC Primescan AC scanner showed the best accuracy according to the results of model discrepancies. It has an average error of 13.727.34. The arc error was 18.8 microns, and the discrepancies in the frontal area and chewing area were 18 and 6.8 microns, respectively. 3Shape Trios 3 scanner has the closest accuracy, with an average error of 16.285.94 microns. The error value of Aoralscan 3 was 42.0818.34 microns, its arc accuracy was 65 microns, and the discrepancies in the frontal and chewing areas were 33 and 55.1 microns, respectively. Emerald S Mode C had an average error of 35.8422.29 microns, which was higher than that of Medit i500 and Aoralscan 3; however, Aoralscan 3 showed better precision (18.34 microns versus 22.29 microns). According to the comparison results of the models in the MeshLab program, CEREC Primescan AC showed the smallest median of distances (18 microns). The TRIOS 3 and Emerald S Mode C differed from the standard by an average of 29 microns, and Aoralscan 3 scanners had of 33 microns and Medit i500 had 41 microns.
CONCLUSION: The precision of Aoralscan 3 scanner, which is the best among its analogs in the price category, makes it the most affordable scanner for dental surgical, orthodontic, and orthopedic fields. CEREC Primescan AC is the leader of the premium scanners involved in the study and available in the dental market.
Subject
Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献