Diagnostic performance study on the melanoma automated diagnosis software powered by artificial intelligence technologies

Author:

Sergeev Vasiliy Yu.ORCID,Sergeev Yu. Yu.ORCID,Tamrazova O. B.ORCID,Nikitaev V. G.ORCID,Pronichev A. N.ORCID,Sergeeva M. A.ORCID

Abstract

INTRODUCTION: The research evaluates a series of publications on the machine recognition efficacy of cutaneous melanoma dermatoscopic images. Some authors report high sensitivity and specificity of automated diagnostics of skin tumors. Significant differences in the published data can be attributed to the use of different algorithms and groups of skin neoplasms to calculate the accuracy rate. MATERIALS AND METHODS: The diagnostic performance of two automated artificial intelligence systems is compared. RESULTS: The convolutional neural network algorithm improves the overall diagnostic accuracy by 7% compared to the algorithm without deep learning, while the overall accuracy rate was 78%. An initial set of 100 dermatoscopic images used in the study is published online for the assessment of the applicability of the obtained data when introducing existing artificial intelligence systems. CONCLUSION: The main limitations and possible ways to further improve the automated diagnosis of skin tumors based on digital dermatoscopy are outlined.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3