Impact of beta-D-glucan on survival and hematopoietic parameters of mice after exposure to X-rays

Author:

Murzina Elena V.ORCID,Sofronov Genrikh A.ORCID,Simbirtsev Andrey S.ORCID,Aksenova Natalia V.ORCID,Zagorodnikov Gennady G.ORCID,Veselova Olga M.,Zhirnova Natalya A.ORCID,Dmitrieva Elena V.ORCID,Klimov Nicolay A.,Vorobeychikov Evgeniy V.

Abstract

BACKGROUND: There is a high need for drugs to reduce the side effects of radiation exposure on people in extreme, military, marine, space medicine, at nuclear facilities, in hematology and oncology. AIM: To evaluate the antiradiation efficacy of beta-D-glucan derived from Oyster mushroom (Pleurotus ostreatus) after total body irradiation of mice in terms of survival and hematopoiesis. MATERIALS AND METHODS: The study was conducted on a mouse model of the acute radiation hematopoietic syndrome caused by exposure to X-rays. Radioprotective effect of intragastrically administered beta-D-glucan derived from Pleurotus ostreatus at a dose of 500 mg/kg was studied. The parameters of the 30-day survival of irradiated mice were analyzed using the KaplanMeyer method. Dose reduction factor of X-ray radiation was calculated to evaluate the radiomodifying effect. The hematopoiesis was assessed by the endogenous colony formation test and hematological parameters in irradiated mice. Statistical analysis was performed using the Statistica 8.0 software. RESULTS: The antiradiation efficacy of orally administered beta-D-glucan has been shown. DRF was 1.16 when the drug was administered 0.5 hours before irradiation and 1.06 during therapeutic use (after 1 or 2 hours). There was a decrease in weight loss in lethally irradiated mice and its faster recovery. Single oral administration of beta-D-glucan at a dose of 500 mg/kg stimulated the growth of splenic endogenous colony-forming units in mice on day 9 after total body irradiation at doses of 7 and 7.8 Gy, contributed to a decrease in the severity of leukopenia and thrombocytopenia. The antiradiation effect of beta-D-glucan was associated with an increase in the viability of bone marrow stem cells and a faster restoration of hematopoiesis. CONCLUSIONS: The results obtained indicate the possibility of using beta-D-glucan from P. ostreatus both before irradiation to increase the radioresistance and for early therapy of the hematopoietic syndrome of acute radiation sickness.

Publisher

ECO-Vector LLC

Subject

General Medicine

Reference34 articles.

1. Radioprotection and Radiomitigation: From the Bench to Clinical Practice

2. Military medical organizations capability in delivery of specialized medical care in radiation emergencies

3. Basharin VA, Karamullin MA, Zatsepin VV, Chekhovskih YuS. Actual issues of an improvement of the medical aid delivery system in case of acute radiopathology in the Armed Forces of the Russian Federation. Military Medical Journal. 2016;337(11):11–20. (In Russ.)

4. Radiation‐induced tissue damage and response

5. Ponomareva TV, Kalnitsky SA, Vishnjakova NM. Medical exposure and strategy of its prophylaxis. Radiation hygiene. 2008;1(1): 63–68. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3