Application of digital technology in the work of a pathologist: guidelines for learning how to use speech recognition systems

Author:

Khramtsov Andrey I.,Nasyrov Ruslan A.,Khramtsova Galina F.

Abstract

Natural language processing is one of the branches of computational linguistics. It is a branch of computer science that includes algorithmic processing of speech and natural language scripts. The algorithms facilitate the development of human-to-machine translation and automatic speech recognition systems (ASRS). ASRS use is twofold: accurately converting operators speech into a coherent and meaningful text and using natural language for interaction with a computer. Currently, these systems are widely used in medical practice, including anatomic pathology. Successful ASRS implementation pivots on creation of standardized templated descriptions for organic inclusion in the diagnosis dictation, likewise on physician training for using such systems in practice. In the past decade, there have been several attempts to standardize surgical pathology reports and create templates undertaken by physicians worldwide. After studying domestic and foreign literature, we created a list of the essential elements that must be included in the template for macro-and microscopic descriptions comprising the final diagnosis. These templates will help in decision-making and accurate diagnosis as they contain all the imperative elements in order of importance. This approach will significantly reduce the need for re-examination of both fixed macroscopic material and the preparation of additional histological sections. The templates built into ASRS reduce the time spent on documentation and significantly reduce the workload for pathologists. For the successful use of ASRS, we have developed an educational course, Digital Speech Recognition in an Anatomical Pathology Practice, for postgraduate education of both domestic and foreign doctors. A brief description of the course is presented in this article, and the course itself is available on the Internet.

Publisher

ECO-Vector LLC

Subject

General Medicine

Reference22 articles.

1. Белоногов Г.Г. Компьютерная лингвистика и перспективные информационные технологии. М.: Русский мир, 2004. [Belonogov GG. Komp’yuternaya lingvistika i perspektivnye informatsionnye tekhnologii. Moscow: Russkiy mir; 2004. (In Russ.)]

2. Боярский К.К. Введение в компьютерную лингвистику. Учеб. пос. СПб.: НИУ ИТМО, 2013. [Boyarskiy KK. Vvedenie v komp’yuternuyu lingvistiku. Ucheb. pos. Saint Petersburg: NIU ITMO; 2013. (In Russ.)]

3. Evaluation of the effectiveness of the implementation of speech recognition technology for the preparation of radiological protocols

4. Мальков П.Г., Франк Г.А., Пальцев М.А. Стандартные технологические процедуры при проведении патологоанатомических исследований: Клинические рекомендации. М.: Практическая медицина, 2017. [Mal’kov PG, Frank GA, Pal’tsev MA. Standartnye tekhnologicheskie protsedury pri provedenii patologoanatomicheskikh issledovaniy: Klinicheskie rekomendatsii. Moscow: Prakticheskaya meditsina; 2017. (In Russ.)]

5. Практические рекомендации по лечению герминогенных опухолей у мужчин

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3