Radiomics for diagnosing clinically significant prostate cancer PI-RADS 3: what is already known and what to do next?

Author:

Tyan Alexandra S.1ORCID,Karmazanovskij Grigoriy G.1ORCID,Karelskaya Natalia A.1,Kondratyev Evgeniy V.1,Kovalev Alexander D.1

Affiliation:

1. A.V. Vishnevsky National Medical Research Center of Surgery

Abstract

BACKGROUND: Prostate cancer is currently the second most commonly diagnosed cancer in men. The second edition of the Prostate Imaging Magnetic Resonance Imaging Data Assessment and Reporting System (PI-RADS) was released in 2019 to standardize the diagnostic process. Within this classification, the PI-RADS 3 category indicates an intermediate risk of clinically significant prostate cancer. There is currently no consensus in the literature regarding the optimal treatment for patients in this category. Some researchers advocate for biopsy as a means of further evaluation, while others propose a strategy of active surveillance for these patients. AIM: The aim of this study is to analyze and compare existing diagnostic models based on radiomics to differentiate and detect clinically significant prostate cancer in patients with a PI-RADS 3 category. MATERIALS AND METHODS: A comprehensive search of the PubMed, Scopus, and Web of Science databases was conducted using the following keywords: PI-RADS 3, radiomics, texture analysis, clinically significant prostate cancer, with additional emphasis on studies evaluated by Radiology Quality Score. The selected studies were required to meet the following criteria: (1) identification of PI-RADS 3 according to version 2.1 guidelines, (2) use of systemic biopsy as a control, (3) use of tools compatible with the IBSI standard for analyzing radiologic features, and (4) detailed description of methodology. Consequently, four meta-analyses and 12 original articles were selected. RESULTS: Radiomics-based diagnostic models have demonstrated considerable potential for enhancing the accuracy of detecting clinically significant prostate cancer in the PI-RADS 3 category using the PI-RADS V2.1 system. However, studies by A. Stanzione A. et al. and J. Bleker et al. have identified quality issues with such models, which constrains their clinical application based on low Radiology Quality Score values. In contrast, the works of T. Li et al. and Y. Hou et al. proposed innovative methods, including nomogram development and the application of machine learning, which demonstrated the potential of radiomics in improving diagnosis for this category. This indicates the potential for further development and application of radiomics in clinical practice. CONCLUSIONS: Although the models developed today cannot completely replace PI-RADS, the inclusion of radiomics can greatly enhance the efficiency of the diagnostic process by providing radiologists with quantitative and qualitative criteria that will enable the diagnosis of prostate cancer with greater confidence.

Publisher

ECO-Vector LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3