Reinforcing systems of the brain and quantification of their work

Author:

Shabanov P. D.12ORCID,Likhtman Ya. B.1,Lebedev A. A.1ORCID

Affiliation:

1. Institute of Experimental Medicine

2. Kirov Military Medical Academy

Abstract

BACKGROUND: The reinforcing systems of the brain are represented by the ventral forbrain dopaminergic bundle, which innervates the emotiogenic structures of the limbic system. Their study shows the reproduction of unconditioned (self-stimulation, self-administration) and conditioned reflex (preference for place, temperature, color) reactions. The quantitative assessment of the brain’s reinforcing systems remains unclear. For self-stimulation of brain structures, the change of the pedal presses in the Skinner chamber and some calculated coefficients are used, for example, the “mismatch coefficient”, which characterizes the temporal characteristics of the pedal pressings. AIM: To develop, test, and substantiate an additional objective quantitative method for assessing the reinforcing systems of the brain, called the “addiction coefficient”, based on an analysis of the effect of three psychoactive compounds (amphetamine, morphine and ethanol) in different doses on self-stimulation of the lateral hypothalamus in rats. MATERIALS AND METHODS: The main method for studying the reinforcing systems of the brain was the reaction of self-stimulation of the lateral hypothalamus in Wistar rats, which was modulated by the administration of psychoactive substances. The psychomotor stimulant amphetamine (phenamine) hydrochloride (0.5, 1, 2, and 4 mg/kg), narcotic analgesic morphine hydrochloride (1, 2, 4, and 8 mg/kg), and ethanol (0.5, 1, 2, and 4 g/kg) administered intraperitoneally were used as inductors of reinforcing. The control was the administration of of 0.9% NaCl solution (0.1, 0.2, 0.4, and 0.8 ml/rat). RESULTS: The use of different controls, characterized by an increase or decrease in the self-stimulation reaction in response to the introduction of 0.9% NaCl solution, showed that calculated coefficients, including the “mismatch coefficient”, can change in different directions and do not objectively reflect the reinforcing effects of pharmacological substances. The proposed “addiction coefficient”, which reflected the component of psychic dependence, changed unidirectionally toward an increase. The degree of this increase can be tens and hundreds of percent of the control and is significantly independent of the initial values of self-stimulation. As expected, the “addiction coefficient” increased most clearly after amphetamine administration and less significantly after morphine and ethanol injections. CONCLUSIONS: The “addiction coefficient” of a psychoactive substance, calculated as the ratio of the increase in pedal presses to the value of the “mismatch coefficient”, is a clear quantitative indicator when assessing the reinforcing properties of psychoactive substances in the self-stimulation reaction of the lateral hypothalamus. The “addiction coefficient” does not significantly depend on the initial level of self-stimulation and is recommended for a comparative assessment of the reinforcing properties of primarily related psychoactive compounds.

Publisher

ECO-Vector LLC

Reference18 articles.

1. Effects of ibotenic acid lesion in the basal forebrain on electrical self-stimulation in the middle part of the lateral hypothalamus

2. Björklund A, Lindvall O. Dopamine-containing systems in the CNS. Classical neurotransmitters in the CNS. In: Björklund A, Hökfelt T, editors. Part I. Handbook of chemical neuroanatomy. Vol. 2. Amsterdam-New York-Oxford: Elsevier, 1984. P. 55–122.

3. Drugs of abuse: anatomy, pharmacology and function of reward pathways

4. Shabanov PD, Lebedev AA. The extended amygdala system and self-stimulation of the lateral hypothalamus in rats: modulation with opiates and opioids. Russian journal of physiology. 2011;97(2):180–188. EDN: NUWRXT

5. Shabanov PD, Lebedev AA, Yaklashkin AV. Significance of the GABA and dopamine system in the bed nucleus of the terminal striatum for the reinforcing effects of opioid and non-opioid narcogens on lateral hypothalamic self-stimulation in rats. Narcology. 2011;10(1):36–43. EDN: WTIBKJ (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3