Individual age determination based on computed tomography knee analysis using artificial neural networks and computer vision: Preliminary results

Author:

Zolotenkov Dmitry D.ORCID,Trufanov Maksim I.ORCID,Solodovnikov Vladimir I.ORCID

Abstract

BACKGROUND: Currently, studies have focused on the modernization of existing methods of forensic age assessment (bone and skeletal) through the active use of modern methods of medical imaging (e.g., computed tomography) and artificial intelligence for their analysis. This approach enables the creation of new methods for assessing biological age, which is characterized by increased accuracy and reproducibility. AIM: To develop and test an algorithm for predicting the biological age of an individual based on computed tomography analysis of the knee joint using artificial neural networks and computer vision. MATERIALS AND METHODS: This observational retrospective transverse (one time) study analyzed computed tomography scans (334) of the knee joint performed in the Departments of Radiation Diagnostics of the Priorov Central Institute for Trauma and Orthopedics, Vreden National Medical Center for Traumatology and Orthopedics, between 2018 and 2021. The study enrolled persons of both sexes aged 13–45 years. Cases of developmental abnormalities, knee injuries, signs of general connective tissue pathology were excluded. Research methods include the use of intelligent information technologies (a formalized set of mathematical and software solutions). RESULTS: Based on the experiments conducted, an algorithm for assessing age according to the computed tomography scans of the knee joint has been developed. The main components of the developed system are as follows: a preprocessing module, an intelligent computing core, a data analysis module, a three-dimensional reconstruction module, a property extraction module, and a final age assessment module. The essence of the proposed method is the simultaneous use of artificial neural networks and clearly formalized mathematical procedures for calculating the properties of the epiphyseal line. To obtain the results and conduct primary experimental studies that confirmed the feasibility, correctness, and operability of the method, software using the YOLOv5 neural network was developed. The result of the error matrix analysis after training shows a probability of correct recognition of the order of 80%. Verification of experimental studies was performed on 46 cases. At present, the age estimation error is approximately 1 year for children and adolescents. CONCLUSIONS: The experimental results have confirmed the adequacy of the age estimates obtained to the actual age of the individual and, consequently, the applicability of the proposed method in forensic medical institutions. The proposed method is currently implemented as a set of software components with subsequent manual integration of automatically calculated data. The plan was to supplement the database of computed tomography images to increase the training sample and the accuracy of age prediction.

Publisher

ECO-Vector LLC

Subject

Law,Pathology and Forensic Medicine,Anatomy

Reference15 articles.

1. AGFAD (2018) Stellungnahme: Forensische altersdiagnostik bei unbegleiteten minderjährigen flüchtlingen. Arbeitsgemeinschaft für forensische altersdiagnostik. Available from: https://www.dgrm.de/institute/deutschland/institut-essen/news-essen/stel.... Accessed: 15.5.2020.

2. Criteria for age estimation in living individuals

3. Forensic Age Estimation: Methods, Certainty, and the Law

4. The fusion of ossification centers – A comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults

5. A Computed Tomographic Analysis of Spheno-Occipital Synchondrosis Ossification for Age Estimation in a Sample of Egyptians

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3