Next-generation pacemakers: from electrical devices to biological pacemakers

Author:

Oslopov V N,Mamedova A Kh,Nafeeva D N,Khazova E V,Oslopova Yu V

Abstract

The invention of an electric pacemaker in the middle of the 20th century led to a revolution in the treatment of cardiac conduction system diseases. The improvement of pacemakers continued. In 1962, the first small series of external pacemakers for percutaneous and direct stimulation was produced in Kaunas. After a while, electric pacemakers became more reliable, smaller and lighter in weight, but the problem of foreign body associated infection and limited service life remained unresolved. Modern high-tech medicine strives to create less invasive electric pacemakers, but nevertheless, biological pacemakers can expand the therapeutic arsenal for the treatment of cardiac patients, being the most physiological for humans. The concept of an artificial biological pacemaker consists of the creation of an organic structure that generates a spontaneous rhythm from the implantation site in the myocardium. Various gene and cellular approaches were used to create biological pacemakers: a functional reorganization approach (use of adenovirus vectors for hyperexpression of genes encoding ion channels in cardiomyocytes); hybrid approach (use of fibroblasts to deliver genes of ion channels that provide heart automation); somatic reprogramming approach (overexpression of the transcription factor TBX18 using adenoviral vectors, which reprograms cardiomyocytes into induced sinoatrial node cells, creating cardiac stimulatory activity); cellular approach (transplantation of stem cells to a specific place in the heart, thereby creating biological stimulation). Modern methods of electrical cardiac stimulation and the developed concepts of the biological pacemaker clearly show the possibility of eliminating current problems associated with the use of an artificial pacemaker by replacing it with a biological one. Each of the approaches (gene, cellular, hybrid-cellular, somatic reprogramming) has its own advantages and disadvantages, which predisposes to further study and improvement in order to introduce a biological pacemaker into clinical practice.

Publisher

ECO-Vector LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3