Development of a biosafe ELISA-based platform for assessing immunogenicity in the production of an inactivated whole-virion coronavirus vaccine

Author:

Danilov Dmitry V.ORCID,Shmeleva Olga A.,Lunin Alexander S.,Kozlovskaya Liubov I.ORCID,Piniaeva Anastasia N.ORCID,Shishova Anna A.ORCID

Abstract

BACKGROUND: SARS-CoV-2 vaccine immunogenicity is evaluated in neutralization test with live virus. It is performed in a biosafety level 3 zone because requires live virus stage. Therefore, control laboratories should be certified for this class of work. The development of technology based on enzyme-linked immunosorbent assay as an analogue of the neutralization reaction makes it possible to create an immunobiological product in a shorter time and in conditions without special requirements for control laboratories. AIM: Development of an enzyme-linked immunosorbent assay for assessing SARS-CoV-2 vaccine immunogenicity by measuring neutralizing antibodies production in immunized animals. MATERIALS AND METHODS: Recombinant receptor-binding domain fused to a С-terminal hexahistidine sequence was produced in Escherichia coli cells and purified via metal-affinity chromatography on WorkBeads NiMAC (Bio-Works). Purified protein was used in enzyme-linked immunosorbent assay as an antigen for sorption. The sera of mice immunized with the vaccine preparation were tested for neutralizing activity against the SARS-CoV-2, as well as in the developed enzyme-linked immunosorbent assay. RESULTS: Sera with high neutralizing titers showed a high degree of binding to recombinant receptor-binding domain fused to a С-terminal hexahistidine sequence in enzyme-linked immunosorbent assay, while sera from non-immunized animals or sera with neutralization titers less than 1:8 were not reactive in enzyme-linked immunosorbent assay. The Spearman and Pearson correlation coefficients for neutralization test titers and optical density in enzyme-linked immunosorbent assay were 0.759 and 0.76, respectively. The developed assay can be used as a semi-quantitative method for assessing the immunogenicity of a vaccine against coronavirus infection. CONCLUSIONS: The developed platform makes it possible to reliably assess the immunogenicity of an inactivated coronavirus vaccine under conditions that do not require a high biosafety conditions.

Publisher

ECO-Vector LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3