Application prospects of a central air conditioning system in an engine room at a waste water pumping station

Author:

Razakov Muhammet A.1ORCID

Affiliation:

1. Moscow Power Engineering Institute

Abstract

BACKGROUND: Engineering support is crucial for controlling microclimate parameters in rooms experiencing high thermal excesses. It is necessary for mitigating the impact of technological processes on worker health. Recent instrumental research has classified the engine room of a high-voltage sewage pumping station as one such environment, owing to its specific technological conditions that result in significant heat generation. This has led to exploring the potential use of air conditioning systems for such type of rooms in buildings. AIMS: The objectives are to assess the feasibility of implementing a central air conditioning system in the engine room of a city's high-voltage seweage pumping station and to calculate the capital costs for installing refrigeration elements. MATERIALS AND METHODS: The study involved reviewing current scientific literature on the viability of air conditioning systems for such applications and conducting preliminary calculations of the required characteristics for refrigeration equipment. It was found that modern design solutions for refrigeration equipment can be integrated into the engine room. RESULTS: The study found that installing an air conditioning system using an artificial cold source (refrigeration machines) for a structure operating with 5 pumps amounted to 49,450,000 rubles. For designs with 3 working units, the cost of the equipment was estimated at 25,650,000 rubles. Employing only air humidification strategies would reduce capital costs to 9,900,000 rubles (for 5 working pumps) and 5,800,000 rubles (with 3 working pumps). CONCLUSIONS: Although implementing an air conditioning system in high-voltage sewage pumping stations is feasible, it requires large investments during the installation and operation processes. Operating costs during warmer months would be higher if only air humidifying equipment is used instead of installing refrigeration machines.

Publisher

ECO-Vector LLC

Reference17 articles.

1. A Study of the Absorption of Nitrogen Oxides from the Boiler Flue Gases

2. Analysis and Valuation of the Energy-Efficient Residential Building with Innovative Modular Green Wall Systems

3. Abdullin VV, Shnayder DA, Kurzanov SYu, Yavorovsky YuV. IOT technology applications to building heating: predictive control, distributed monitoring, smart hydraulic balancing. Plumbing, Heating, Air conditioning. 2018;8(200):54–58. (In Russ.)

4. Banhidi L. Thermal comfort of rooms. Moscow: Stroyizdat; 1981. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3