Post-stress changes in il-6 and bdnf mRNA levels in the hippocampus and blood of rats with a genetically determined contrast level of nervous system excitability

Author:

Mayanova E. Y.1,Novozhilova S. A.1,Shalaginova I. G.1,Zachepilo T. G.2,Dyuzhikova N. A.2

Affiliation:

1. Immanuel Kant Baltic Federal University, 236041

2. Pavlov Institute of Physiology of the Russian Academy of Sciences

Abstract

Neuroinflammation is considered as one of the mechanisms by which stress can potentially lead to a disturbance of the functions of the central nervous system. The presence of neuroimmune dysfunction after stress, and what genetic factors increase the risk of post-stress neuroinflammation has not been sufficiently investigated. Genetically determined excitability of the nervous system is a promising marker of individual vulnerability to stress, manifested in post-stress disorders associated with the specifics of the formation of neuroinflammation.The aim of this work was to study post-stress changes in the expression of pro-inflammatory il-6 genes in the blood and hippocampus and anti-inflammatory cytokine bdnf in the blood of rats with genetically determined high and low levels of excitability of the nervous system. Breeding animals were used, males of two strains of rats aged 5 months: with a high threshold (HT) of excitability of the nervous system (low excitable) and a low threshold (LT) of excitability of the nervous system (high excitable) from the biological collection of the Pavlov Institute of Physiology of the Russian Academy of Sciences. The stress model is a long-term emotional and painful stress according to the scheme of K. Hecht. Experimental and control animals were decapitated 24 hours, 7 days and 24 days after the end of stress exposure. Changes in the mRNA level of the il-6 and bdnf genes were evaluated using real-time PCR.Chronic stress led to a significant increase in the level of il-6 mRNA in the hippocampus only in high excitable animals 24 days after the end of stress. In the blood, the mRNA level of this cytokine increased only in low-excitable rats. The expression of the bdnf gene in blood did not change in response to stress in any of the strains.

Publisher

Society for Regenerative Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3