The future of edible crops in Europe and their maximum point of resistance in temperature increase

Author:

Valjarević Aleksandar,Milanović Miško,Golijanin Jelena,Milinčić Miroljub,Lukić Tin

Abstract

In the last decades, knowledge about the climate has increased significantly. Climate change today is the subject of many sciences, including meteorology, climatology, geology, geography, geophysics, astronomy, etc. The present predictions with updated meteorological data and with data of the number of particles of CO2 in the troposphere may give satisfying results. Forecasting for industrial grains such as maize, soybean, and wheat will be essential for industry and everyday life. Within the last agreement of climate change in Paris, global temperatures will continuously be increasing by 2100. In this research, we used a synthetic grid with agroclimatological data which comprises predictions until 2100. These data were found in the sub-section called World Clim Version 1 or in the CMIP5 database. After numerical and geospatial GIS analysis, we got the following predictions: (i) slight- no temperature changes or changes including the increase of temperature by 0.5 °C, (ii) moderate- temperature increases by 2.0 °C, (iii) severe- temperature increases by 5.0 °C, and (iv) incredible- temperature increases to extreme values, incase of which the survival of plants will be endangered.

Publisher

Idojaras

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3