Spatiotemporal imputation of missing rainfall values to establish climate normals

Author:

O’Sullivan Brian,Kelly Gabrielle

Abstract

Spatial kriging interpolation has been a widely popular geostatistical method for decades, and it is commonly used to predict both gridded and missing climatic variables. Climate data is typically monitored across a variety of timescales, from daily measurements to thirty-year periods, known as long-term averages (LTAs). LTAs can be constructed from daily, monthly, or annual measurements so long as any missing values in the data are infilled first. Although spatial kriging is an available method for the prediction of missing data, it is limited to a single moment in time for each imputation. Not only can missing values only be predicted with observations measured at the same instance in time, but the entire imputation process must be repeated up to the number of timesteps in which missing data is present. This study investigates the imputation performance of spatiotemporal regression kriging, an extension of spatial regression kriging which simultaneously accounts for data across both space and time. Hence, missing data is predicted using observations from other points in time, and only a single imputation process is required for the entire data set. Spatiotemporal regression kriging has been evaluated against a variety of geostatistical methods, including spatial kriging, for the imputation of monthly rainfall totals for the Republic of Ireland. Across all tests, the spatiotemporal methods presented have outperformed any purely spatial methods considered. Furthermore, three different regression methods were considered when de-trending the data before interpolation. Of those tested, generalized least squares (GLS) was shown to provide the best results, followed by elastic-net regularization when GLS proved computationally unavailable. Finally, the data set has been infilled using the best performing imputation method, and precipitation LTAs are presented for the Republic of Ireland from 1981–2010.

Publisher

Idojaras

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3