Review of Machine Learning models for Credit Scoring Analysis

Author:

Rudra Kumar Madapuri,Kumar Gunjan Vinit

Abstract

Introduction:Increase in computing power and the deeper usage of the robust computing systems in the financial system is propelling the business growth, improving the operational efficiency of the financial institutions, and increasing the effectiveness of the transaction processing solutions used by the organizations. Problem:Despite that the financial institutions are relying on the credit scoring patterns for analyzing the credit worthiness of the clients, still there are many factors that are imminent for improvement in the credit score evaluation patterns.  Objective:Machine learning is offering immense potential in Fintech space and determining a personal credit score. Organizations by applying deep learning and machine learning techniques can tap individuals who are not being serviced by traditional financial institutions. Methodology:One of the major insights into the system is that the traditional models of banking intelligence solutions are predominantly the programmed models that can align with the information and banking systems that are used by the banks. But in the case of the machine-learning models that rely on algorithmic systems require more integral computation which is intrinsic.  Results:The test analysis of the proposed machine learning model indicates effective and enhanced analysis process compared to the non-machine learning solutions. The model in terms of using various classifiers indicate potential ways in which the solution can be significant. Conclusion: If the systems can be developed to align with more pragmatic terms for analysis, it can help in improving the process conditions of customer profile analysis, wherein the process models have to be developed for comprehensive analysis and the ones that can make a sustainable solution for the credit system management. Originality:The proposed solution is effective and the one conceptualized to improve the credit scoring system patterns.  Limitations: The model is tested in isolation and not in comparison to any of the existing credit scoring patterns. 

Publisher

Universidad Cooperativa de Colombia- UCC

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Machine Learning for Credit Scoring;Mathematics;2024-05-02

2. Machine Learning;Advances in Finance, Accounting, and Economics;2024-04-26

3. Framework for multi-criteria assessment of classification models for the purposes of credit scoring;Journal of Big Data;2023-06-02

4. Risk Management Tools to Improve the Efficiency of Lending to Retail Segments;Risk Management, Sustainability and Leadership;2023-03-15

5. Arrhythmia Prediction on Optimal Features Obtained from the ECG as Images;Computer Systems Science and Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3