Affiliation:
1. Vyatka State University
2. Penza State University
Abstract
We are considering a parallel implementation of matrix-vector multiplication (GEMV, Level 2 of the BLAS) for graphics processing units (GPUs) using multiple-precision arithmetic based on the residue number system. In our GEMV implementation, element-wise operations with multiple-precision vectors and matrices consist of several parts, each of which is calculated by a separate CUDA kernel. This feature eliminates branch divergence when performing sequential parts of multiple-precision operations and allows the full utilization of the GPU’s resources. An efficient data structure for storing arrays with multiple-precision entries provides a coalesced access pattern to the GPU global memory. We have performed a rounding error analysis and derived error bounds for the proposed GEMV implementation. Experimental results show the high efficiency of the proposed solution compared to existing high-precision packages deployed on GPU.
Publisher
Ailamazyan Program Systems Institute of Russian Academy of Sciences (PSI RAS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献