BOOKER PREDICTION FROM REQUESTS FOR QUOTATION VIA MACHINE LEARNING TECHNIQUES

Author:

RUNGGALDIER Samuel,SOTTOCORNOLA GabrieleORCID,JANES Andrea,STELLA Fabio,ZANKER Markus

Abstract

Purpose – Many incoming requests for quotation usually compete for the attention of accommodation service provider staff on a daily basis, while some of them might deserve more priority than others. Design – This research is therefore based on the correspondence history of a large booking management system that examines the features of quotation requests from aspiring guests in order to learn and predict their actual booking behavior. Approach – In particular, we investigate the effectiveness of various machine learning techniques for predicting whether a request will turn into a booking by using features such as the length of stay, the number and type of guests, and their country of origin. Furthermore, a deeper analysis of the features involved is performed to quantify their impact on the prediction task. Findings – We based our experimental evaluation on a large dataset of correspondence data collected from 2014 to 2019 from a 4-star hotel in the South Tyrol region of Italy. Numerical experiments were conducted to compare the performance of different classification models against the dataset. The results show a potential business advantage in prioritizing requests for proposals based on our approach. Moreover, it becomes clear that it is necessary to solve the class imbalance problem and develop a proper understanding of the domain-specific features to achieve higher precision/recall for the booking class. The investigation on feature importance also exhibits a ranking of informative features, such as the duration of the stay, the number of days prior to the request, and the source/country of the request, for making accurate booking predictions. Originality of the research – To the best of our knowledge, this is one of the first attempts to apply and systematically harness machine learning techniques to request for quotation data in order to predict whether the request will end up in a booking.

Publisher

University of Rijeka, Faculty of Tourism and Hospitality Management

Subject

Tourism, Leisure and Hospitality Management,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3